Applications of shell-isolated nanoparticles in surface-enhanced Raman spectroscopy and fluorescence

被引:39
作者
Fang, Ping-Ping [1 ]
Lu, Xihong [1 ]
Liu, Hong [1 ,2 ]
Tong, Yexiang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Chem & Chem Engn, KLGHEI Environm & Energy Chem, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Guangdong, Peoples R China
[2] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 401122, Peoples R China
基金
中国国家自然科学基金;
关键词
Biocompatibility; Biodetection; In-vivo imaging; Localized surface-plasmon resonance; Shell-isolated nanoparticle; Shell-isolated nanoparticle-enhanced fluorescence; Shell-isolated nanoparticle-enhanced; Raman spectroscopy; SHINERS; Surface-enhanced fluorescence; Surface-enhanced Raman spectroscopy; LANGMUIR-BLODGETT MONOLAYERS; GOLD NANOPARTICLES; PLASMONIC ENHANCEMENT; DYE MOLECULES; SERS; SCATTERING; SILVER; AU; AG; FILM;
D O I
10.1016/j.trac.2014.11.015
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Shell-isolated nanoparticle (NP)-enhanced Raman spectroscopy (SHINERS) has expanded the versatility of surface-enhanced Raman scattering (SERS) and can be applied to virtually any substrate type and morphology. Surface-plasmon resonance (SPR) can enhance fluorescence through an electromagnetic field in a similar way to SERS, which is called surface-enhanced fluorescence (SEF) or metal-enhanced fluorescence (MEF). The SERS-SEF dual-mode method can greatly improve the accuracy and the sensitivity of detection in applications. In this review, we introduce extension of SHINERS to shell-isolated NP-enhanced fluorescence (SHINEF) and application of the SERS-fluorescence dual-mode technique, taking advantage of SERS and fluorescence. We first introduce SHINERS and its applications, and then move on to the applications of SHINERS in SEE Finally, we introduce application of the SERS-fluorescence dual mode to biodetection and bioimaging. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 117
页数:15
相关论文
共 144 条
[1]   Distance Dependent Surface Enhanced Raman and Fluorescence by Supported 2D Assembly of Plasmonic Metal Nanoparticles [J].
Ahamad, Nur ;
Al-Amin, Md. ;
Ianoul, A. .
ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (16) :9226-9232
[2]   SERS-Based Diagnosis and Biodetection [J].
Alvarez-Puebla, Ramon A. ;
Liz-Marzan, Luis M. .
SMALL, 2010, 6 (05) :604-610
[3]   Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Expanding the Versatility of Surface-Enhanced Raman Scattering [J].
Anema, Jason R. ;
Li, Jian-Feng ;
Yang, Zhi-Lin ;
Ren, Bin ;
Tian, Zhong-Qun .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 4, 2011, 4 :129-150
[4]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[5]   FLUORESCENCE ENHANCEMENT FROM LANGMUIR-BLODGETT MONOLAYERS ON SILVER ISLAND FILMS [J].
AROCA, R ;
KOVACS, GJ ;
JENNINGS, CA ;
LOUTFY, RO ;
VINCETT, PS .
LANGMUIR, 1988, 4 (03) :518-521
[6]  
Aroca R., 2006, SURFACE ENHANCED VIB
[7]   Plasmon-Enhanced Fluorescence and Spectral Modification in SHINEF [J].
Aroca, Ricardo F. ;
Teo, Geok Yi ;
Mohan, Haider ;
Guerrero, Ariel R. ;
Albella, Pablo ;
Moreno, Fernando .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (42) :20419-20424
[8]   Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells [J].
AshaRani, P. V. ;
Mun, Grace Low Kah ;
Hande, Manoor Prakash ;
Valiyaveettil, Suresh .
ACS NANO, 2009, 3 (02) :279-290
[9]   Metal-enhanced fluorescence: an emerging tool in biotechnology [J].
Aslan, K ;
Gryczynski, I ;
Malicka, J ;
Matveeva, E ;
Lakowicz, JR ;
Geddes, CD .
CURRENT OPINION IN BIOTECHNOLOGY, 2005, 16 (01) :55-62
[10]   Ultrasonic-Assisted Synthesis of Monodisperse Ag Nanoparticles and Their Applications in Surface Enhanced Raman Scattering and Fluorescence Enhancement [J].
Bi, Xia ;
Zuo, Jian ;
Yang, Qing .
CHINESE JOURNAL OF CHEMICAL PHYSICS, 2012, 25 (04) :501-506