Variability in Action Selection Relates to Striatal Dopamine 2/3 Receptor Availability in Humans: A PET Neuroimaging Study Using Reinforcement Learning and Active Inference Models

被引:17
作者
Adams, Rick A. [1 ,2 ,3 ,4 ]
Moutoussis, Michael [5 ,6 ]
Nour, Matthew M. [3 ,4 ,7 ]
Dahoun, Tarik [3 ,4 ,8 ]
Lewis, Declan [1 ]
Illingworth, Benjamin [1 ]
Veronese, Mattia [9 ]
Mathys, Christoph [6 ,10 ,11 ,12 ]
de Boer, Lieke [13 ]
Guitart-Masip, Marc [6 ,13 ]
Friston, Karl J. [5 ]
Howes, Oliver D. [3 ,4 ,7 ]
Roiser, Jonathan P. [1 ]
机构
[1] UCL, Inst Cognit Neurosci, 17 Queen Sq, London WC1N 3AZ, England
[2] UCL, Div Psychiat, London W1T 7NF, England
[3] Hammersmith Hosp, MRC London Inst Med Sci, Robert Steiner MRI Unit, Psychiat Imaging Grp, London W12 0NN, England
[4] Imperial Coll London, Hammersmith Hosp, Fac Med, Inst Clin Sci, London W12 0NN, England
[5] UCL, Wellcome Ctr Human Neuroimaging, London WC1N 3BG, England
[6] Max Planck UCL Ctr Computat Psychiat & Ageing Res, London WC1B 5EH, England
[7] Kings Coll London, Inst Psychiat Psychol & Neurosci IoPPN, Dept Psychosis Studies, London SE5 8AF, England
[8] Univ Oxford, Warneford Hosp, Dept Psychiat, Oxford OX3 7JX, England
[9] Kings Coll London, Ctr Neuroimaging Sci, Inst Psychiat Psychol & Neurosci IoPPN, London SE5 8AF, England
[10] Scuola Internazl Super Avanzati SISSA, I-34136 Trieste, Italy
[11] Univ Zurich, Inst Biomed Engn, Translat Neuromodeling Unit TNU, CH-8032 Zurich, Switzerland
[12] Swiss Fed Inst Technol, CH-8032 Zurich, Switzerland
[13] Karolinska Inst, Aging Res Ctr, S-17165 Stockholm, Sweden
基金
英国医学研究理事会; 英国惠康基金; 欧盟第七框架计划; 瑞典研究理事会;
关键词
active inference; action selection; decision temperature; dopamine; 2/3; receptors; go no-go task; reinforcement learning; D2; RECEPTORS; BINDING; SENSITIVITY; MODULATION; PREDICTION; RELEASE; CHOICES; REWARD; D1;
D O I
10.1093/cercor/bhz327
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Choosing actions that result in advantageous outcomes is a fundamental function of nervous systems. All computational decision-making models contain a mechanism that controls the variability of (or confidence in) action selection, but its neural implementation is unclear-especially in humans. We investigated this mechanism using two influential decision-making frameworks: active inference (AI) and reinforcement learning (RL). In AI, the precision (inverse variance) of beliefs about policies controls action selection variability-similar to decision 'noise' parameters in RL-and is thought to be encoded by striatal dopamine signaling. We tested this hypothesis by administering a 'go/no-go' task to 75 healthy participants, and measuring striatal dopamine 2/3 receptor (D2/3R) availability in a subset (n = 25) using [C-11]-(+)-PHNO positron emission tomography. In behavioral model comparison, RL performed best across the whole group but AI performed best in participants performing above chance levels. Limbic striatal D2/3R availability had linear relationships with AI policy precision (P = 0.029) as well as with RL irreducible decision 'noise' (P = 0.020), and this relationship with D2/3R availability was confirmed with a 'decision stochasticity' factor that aggregated across both models (P = 0.0006). These findings are consistent with occupancy of inhibitory striatal D(2/3)Rs decreasing the variability of action selection in humans.
引用
收藏
页码:3573 / 3589
页数:17
相关论文
共 83 条
[1]   Long-term test-retest reliability of striatal and extrastriatal dopamine D2/3 receptor binding: study with [11C]raclopride and high-resolution PET [J].
Alakurtti, Kati ;
Johansson, Jarkko J. ;
Joutsa, Juho ;
Laine, Matti ;
Backman, Lars ;
Nyberg, Lars ;
Rinne, Juha O. .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2015, 35 (07) :1199-1205
[2]  
[Anonymous], 1995, Advances in Neural Information Processing Systems
[3]  
[Anonymous], ARXIV190107945QBIO
[4]  
[Anonymous], 2003, INT WORKSHOP ARTIFIC
[5]  
[Anonymous], 2016, J NUCL MED
[6]  
[Anonymous], 2015, Reinforcement Learning: An Introduction
[7]  
[Anonymous], 2001, Wechsler test of adult reading
[8]   Motivational neural circuits underlying reinforcement learning [J].
Averbeck, Bruno B. ;
Costa, Vincent D. .
NATURE NEUROSCIENCE, 2017, 20 (04) :505-512
[9]   The Physiology, Signaling, and Pharmacology of Dopamine Receptors [J].
Beaulieu, Jean-Martin ;
Gainetdinov, Raul R. .
PHARMACOLOGICAL REVIEWS, 2011, 63 (01) :182-217
[10]   Tonic dopamine modulates exploitation of reward learning [J].
Beeler, Jeff A. ;
Daw, Nathaniel ;
Frazier, Cristianne R. M. ;
Zhuang, Xiaoxi .
FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2010, 4