Importance of Systematic Right Ventricular Assessment in Cardiac Resynchronization Therapy Candidates: A Machine Learning Approach

被引:10
作者
Galli, Elena [1 ]
Le Rolle, Virginie [1 ]
Smiseth, Otto A. [2 ,3 ,4 ]
Duchenne, Jurgen [5 ,6 ]
Aalen, John M. [2 ,3 ,4 ]
Larsen, Camilla K. [2 ,3 ,4 ]
Sade, Elif A. [7 ]
Hubert, Arnaud [1 ]
Anilkumar, Smitha [8 ]
Penicka, Martin [9 ]
Linde, Cecilia [10 ,11 ]
Leclercq, Christophe [1 ]
Hernandez, Alfredo [1 ]
Voigt, Jens-Uwe [5 ,6 ]
Donal, Erwan [1 ]
机构
[1] Univ Rennes, INSERM, CHU Rennes, LTSI UMR 1099, Rennes, France
[2] Oslo Univ Hosp, Inst Surg Res, Oslo, Norway
[3] Oslo Univ Hosp, Dept Cardiol, Oslo, Norway
[4] Univ Oslo, Oslo, Norway
[5] Katholieke Univ Leuven, Dept Cardiovasc Dis, Leuven, Belgium
[6] Katholieke Univ Leuven, Dept Cardiovasc Sci, Leuven, Belgium
[7] Baskent Univ Hosp, Dept Cardiol, Ankara, Turkey
[8] Hamad Med Corp, Dept Cardiol, Noninvas Cardiac Lab, Heart Hosp, Doha, Qatar
[9] OLV Clin, Cardiovasc Ctr Aalst, Aalst, Belgium
[10] Karolinska Univ Hosp, Heart & Vasc Theme, Stockholm, Sweden
[11] Karolinska Inst, Stockholm, Sweden
关键词
Cardiac resynchronization therapy; Heart failure; Machine learning; Right ventricle; HEART-FAILURE PATIENTS; BUNDLE-BRANCH BLOCK; LONG-TERM SURVIVAL; EUROPEAN ASSOCIATION; PRECISION MEDICINE; AMERICAN SOCIETY; TASK-FORCE; ECHOCARDIOGRAPHY; DYSSYNCHRONY; PREDICTORS;
D O I
10.1016/j.echo.2020.12.025
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Despite all having systolic heart failure and broad QRS intervals, patients screened for cardiac resynchronization therapy (CRT) are highly heterogeneous, and it remains extremely challenging to predict the impact of CRT devices on left ventricular function and outcomes. The aim of this study was to evaluate the relative impact of clinical, electrocardiographic, and echocardiographic data on the left ventricular remodeling and prognosis of CRT candidates by the application of machine learning approaches. Methods: One hundred ninety-three patients with systolic heart failure receiving CRT according to current recommendations were prospectively included in this multicenter study. A combination of the Boruta algorithm and random forest methods was used to identify features predicting both CRT volumetric response and prognosis. Model performance was tested using the area under the receiver operating characteristic curve. The k-medoid method was also applied to identify clusters of phenotypically similar patients. Results: From 28 clinical, electrocardiographic, and echocardiographic variables, 16 features were predictive of CRT response, and 11 features were predictive of prognosis. Among the predictors of CRT response, eight variables (50%) pertained to right ventricular size or function. Tricuspid annular plane systolic excursion was the main feature associated with prognosis. The selected features were associated with particularly good prediction of both CRT response (area under the curve, 0.81; 95% CI, 0.74-0.87) and outcomes (area under the curve, 0.84; 95% CI, 0.75-0.93). An unsupervised machine learning approach allowed the identification of two phenogroups of patients who differed significantly in clinical variables and parameters of biventricular size and right ventricular function. The two phenogroups had significantly different prognosis (hazard ratio, 4.70; 95% CI, 2.1-10.0; P < .0001; log-rank P < .0001). Conclusions: Machine learning can reliably identify clinical and echocardiographic features associated with CRT response and prognosis. The evaluation of both right ventricular size and functional parameters has pivotal importance for the risk stratification of CRT candidates and should be systematically performed in patients undergoing CRT. (J Am Soc Echocardiogr 2021;34:494-502.)
引用
收藏
页码:494 / 502
页数:9
相关论文
共 36 条
  • [11] Interplay Between Right Ventricular Function and Cardiac Resynchronization Therapy An Analysis of the CARE-HF Trial (Cardiac Resynchronization-Heart Failure)
    Damy, Thibaud
    Ghio, Stefano
    Rigby, Alan S.
    Hittinger, Luc
    Jacobs, Sandra
    Leyva, Francisco
    Delgado, Juan F.
    Daubert, Jean-Claude
    Gras, Daniel
    Tavazzi, Luigi
    Cleland, John G. F.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2013, 61 (21) : 2153 - 2160
  • [12] Relative Merits of Left Ventricular Dyssynchrony, Left Ventricular Lead Position, and Myocardial Scar to Predict Long-Term Survival of Ischemic Heart Failure Patients Undergoing Cardiac Resynchronization Therapy
    Delgado, Victoria
    van Bommel, Rutger J.
    Bertini, Matteo
    Borleffs, C. Jan Willem
    Marsan, Nina Ajmone
    Ng, Arnold C. T.
    Nucifora, Gaetano
    de Veire, Nico R. L. van
    Ypenburg, Claudia
    Boersma, Eric
    Holman, Eduard R.
    Schalij, Martin J.
    Bax, Jeroen J.
    [J]. CIRCULATION, 2011, 123 (01) : 70 - U135
  • [13] New Multiparametric Analysis of Cardiac Dyssynchrony: Machine Learning and Prediction of Response to CRT
    Donal, Erwan
    Hubert, Arnaud
    Le Rolle, Virginie
    Leclercq, Christophe
    Martins, Raphael
    Mabo, Philippe
    Galli, Elena
    Hernandez, Alfredo
    [J]. JACC-CARDIOVASCULAR IMAGING, 2019, 12 (09) : 1887 - 1888
  • [14] A standardized definition of ischemic cardiomyopathy for use in clinical research
    Felker, GM
    Shaw, LK
    O'Connor, CM
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2002, 39 (02) : 210 - 218
  • [15] Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction
    Ghio, Stefano
    Guazzi, Marco
    Scardovi, Angela Beatrice
    Klersy, Catherine
    Clemenza, Francesco
    Carluccio, Erberto
    Temporelli, Pier Luigi
    Rossi, Andrea
    Faggiano, Pompilio
    Traversi, Egidio
    Vriz, Olga
    Dini, Frank Lloyd
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2017, 19 (07) : 873 - 879
  • [16] Machine Learning Algorithm Predicts Cardiac Resynchronization Therapy Outcomes Lessons From the COMPANION Trial
    Kalscheur, Matthew M.
    Kipp, Ryan T.
    Tattersall, Matthew C.
    Mei, Chaoqun
    Buhr, Kevin A.
    DeMets, David L.
    Field, Michael E.
    Eckhardt, Lee L.
    Page, C. David
    [J]. CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2018, 11 (01)
  • [17] Evaluation and Management of Right-Sided Heart Failure A Scientific Statement From the American Heart Association
    Konstam, Marvin A.
    Kiernan, Michael S.
    Bernstein, Daniel
    Bozkurt, Biykem
    Jacob, Miriam
    Kapur, Navin K.
    Kociol, Robb D.
    Lewis, Eldrin F.
    Mehra, Mandeep R.
    Pagani, Francis D.
    Raval, Amish N.
    Ward, Carey
    [J]. CIRCULATION, 2018, 137 (20) : E578 - E622
  • [18] Boruta - A System for Feature Selection
    Kursa, Miron B.
    Jankowski, Aleksander
    Rudnicki, Witold R.
    [J]. FUNDAMENTA INFORMATICAE, 2010, 101 (04) : 271 - 286
  • [19] Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging
    Lang, Roberto M.
    Badano, Luigi P.
    Mor-Avi, Victor
    Afilalo, Jonathan
    Armstrong, Anderson
    Ernande, Laura
    Flachskampf, Frank A.
    Foster, Elyse
    Goldstein, Steven A.
    Kuznetsova, Tatiana
    Lancellotti, Patrizio
    Muraru, Denisa
    Picard, Michael H.
    Rietzschel, Ernst R.
    Rudski, Lawrence
    Spencer, Kirk T.
    Tsang, Wendy
    Voigt, Jens-Uwe
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2015, 28 (01) : 1 - U170
  • [20] Differentiating Electromechanical From Non-Electrical Substrates of Mechanical Discoordination to Identify Responders to Cardiac Resynchronization Therapy
    Lumens, Joost
    Tayal, Bhupendar
    Walmsley, John
    Delgado-Montero, Antonia
    Huntjens, Peter R.
    Schwartzman, David
    Althouse, Andrew D.
    Delhaas, Tammo
    Prinzen, Frits W.
    Gorcsan, John, III
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2015, 8 (09)