Importance of Systematic Right Ventricular Assessment in Cardiac Resynchronization Therapy Candidates: A Machine Learning Approach

被引:10
作者
Galli, Elena [1 ]
Le Rolle, Virginie [1 ]
Smiseth, Otto A. [2 ,3 ,4 ]
Duchenne, Jurgen [5 ,6 ]
Aalen, John M. [2 ,3 ,4 ]
Larsen, Camilla K. [2 ,3 ,4 ]
Sade, Elif A. [7 ]
Hubert, Arnaud [1 ]
Anilkumar, Smitha [8 ]
Penicka, Martin [9 ]
Linde, Cecilia [10 ,11 ]
Leclercq, Christophe [1 ]
Hernandez, Alfredo [1 ]
Voigt, Jens-Uwe [5 ,6 ]
Donal, Erwan [1 ]
机构
[1] Univ Rennes, INSERM, CHU Rennes, LTSI UMR 1099, Rennes, France
[2] Oslo Univ Hosp, Inst Surg Res, Oslo, Norway
[3] Oslo Univ Hosp, Dept Cardiol, Oslo, Norway
[4] Univ Oslo, Oslo, Norway
[5] Katholieke Univ Leuven, Dept Cardiovasc Dis, Leuven, Belgium
[6] Katholieke Univ Leuven, Dept Cardiovasc Sci, Leuven, Belgium
[7] Baskent Univ Hosp, Dept Cardiol, Ankara, Turkey
[8] Hamad Med Corp, Dept Cardiol, Noninvas Cardiac Lab, Heart Hosp, Doha, Qatar
[9] OLV Clin, Cardiovasc Ctr Aalst, Aalst, Belgium
[10] Karolinska Univ Hosp, Heart & Vasc Theme, Stockholm, Sweden
[11] Karolinska Inst, Stockholm, Sweden
关键词
Cardiac resynchronization therapy; Heart failure; Machine learning; Right ventricle; HEART-FAILURE PATIENTS; BUNDLE-BRANCH BLOCK; LONG-TERM SURVIVAL; EUROPEAN ASSOCIATION; PRECISION MEDICINE; AMERICAN SOCIETY; TASK-FORCE; ECHOCARDIOGRAPHY; DYSSYNCHRONY; PREDICTORS;
D O I
10.1016/j.echo.2020.12.025
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Despite all having systolic heart failure and broad QRS intervals, patients screened for cardiac resynchronization therapy (CRT) are highly heterogeneous, and it remains extremely challenging to predict the impact of CRT devices on left ventricular function and outcomes. The aim of this study was to evaluate the relative impact of clinical, electrocardiographic, and echocardiographic data on the left ventricular remodeling and prognosis of CRT candidates by the application of machine learning approaches. Methods: One hundred ninety-three patients with systolic heart failure receiving CRT according to current recommendations were prospectively included in this multicenter study. A combination of the Boruta algorithm and random forest methods was used to identify features predicting both CRT volumetric response and prognosis. Model performance was tested using the area under the receiver operating characteristic curve. The k-medoid method was also applied to identify clusters of phenotypically similar patients. Results: From 28 clinical, electrocardiographic, and echocardiographic variables, 16 features were predictive of CRT response, and 11 features were predictive of prognosis. Among the predictors of CRT response, eight variables (50%) pertained to right ventricular size or function. Tricuspid annular plane systolic excursion was the main feature associated with prognosis. The selected features were associated with particularly good prediction of both CRT response (area under the curve, 0.81; 95% CI, 0.74-0.87) and outcomes (area under the curve, 0.84; 95% CI, 0.75-0.93). An unsupervised machine learning approach allowed the identification of two phenogroups of patients who differed significantly in clinical variables and parameters of biventricular size and right ventricular function. The two phenogroups had significantly different prognosis (hazard ratio, 4.70; 95% CI, 2.1-10.0; P < .0001; log-rank P < .0001). Conclusions: Machine learning can reliably identify clinical and echocardiographic features associated with CRT response and prognosis. The evaluation of both right ventricular size and functional parameters has pivotal importance for the risk stratification of CRT candidates and should be systematically performed in patients undergoing CRT. (J Am Soc Echocardiogr 2021;34:494-502.)
引用
收藏
页码:494 / 502
页数:9
相关论文
共 36 条
  • [1] Auricchio Angelo, 2017, JACC Clin Electrophysiol, V3, P1203, DOI 10.1016/j.jacep.2017.08.005
  • [2] Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging
    Badano, Luigi P.
    Kolias, Theodore J.
    Muraru, Denisa
    Abraham, Theodore P.
    Aurigemma, Gerard
    Edvardsen, Thor
    D'Hooge, Jan
    Donal, Erwan
    Fraser, Alan G.
    Marwick, Thomas
    Mertens, Luc
    Popescu, Bogdan A.
    Sengupta, Partho P.
    Lancellotti, Patrizio
    Thomas, James D.
    Voigt, Jens-Uwe
    [J]. EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2018, 19 (06) : 591 - 600
  • [3] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [4] 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy The Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA)
    Brignole, Michele
    Auricchio, Angelo
    Baron-Esquivias, Gonzalo
    Bordachar, Pierre
    Boriani, Giuseppe
    Breithardt, Ole-A
    Cleland, John
    Deharo, Jean-Claude
    Delgado, Victoria
    Elliott, Perry M.
    Gorenek, Bulent
    Israel, Carsten W.
    Leclercq, Christophe
    Linde, Cecilia
    Mont, Lluis
    Padeletti, Luigi
    Sutton, Richard
    Vardas, Panos E.
    Luis Zamorano, Jose
    Achenbach, Stephan
    Baumgartner, Helmut
    Bax, Jeroen J.
    Bueno, Hector
    Dean, Veronica
    Deaton, Christi
    Erol, Cetin
    Fagard, Robert
    Ferrari, Roberto
    Hasdai, David
    Hoes, Arno W.
    Kirchhof, Paulus
    Knuuti, Juhani
    Kolh, Philippe
    Lancellotti, Patrizio
    Linhart, Ales
    Nihoyannopoulos, Petros
    Piepoli, Massimo F.
    Ponikowski, Piotr
    Sirnes, Per Anton
    Luis Tamargo, Juan
    Tendera, Michal
    Torbicki, Adam
    Wijns, William
    Windecker, Stephan
    Kirchhof, Paulus
    Blomstrom-Lundqvist, Carina
    Badano, Luigi P.
    Aliyev, Farid
    Baensch, Dietmar
    Baumgartner, Helmut
    [J]. EUROPEAN HEART JOURNAL, 2013, 34 (29) : 2281 - 2329
  • [5] Tricuspid Annular Plane Systolic Excursion Evaluation Improves Selection of Cardiac Resynchronization Therapy Patients
    Cappelli, Francesco
    Porciani, Maria Cristina
    Ricceri, Ilaria
    Perrotta, Laura
    Ricciardi, Giuseppe
    Pieragnoli, Paolo
    Paladini, Giulia
    Michelucci, Antonio
    Padeletti, Luigi
    [J]. CLINICAL CARDIOLOGY, 2010, 33 (09) : 578 - 582
  • [6] Charrad M, 2014, J STAT SOFTW, V61, P1
  • [7] Results of the predictors of response to CRT (PROSPECT) trial
    Chung, Eugene S.
    Leon, Angel R.
    Tavazzi, Luigi
    Sun, Jing-Ping
    Nihoyannopoulos, Petros
    Merlino, John
    Abraham, William T.
    Ghio, Stefano
    Leclercq, Christophe
    Bax, Jeroen J.
    Yu, Cheuk-Man
    Gorcsan, John, III
    Sutton, Martin St John
    De Sutter, Johan
    Murillo, Jaime
    [J]. CIRCULATION, 2008, 117 (20) : 2608 - 2616
  • [8] Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy
    Cikes, Maja
    Sanchez-Martinez, Sergio
    Claggett, Brian
    Duchateau, Nicolas
    Piella, Gemma
    Butakoff, Constantine
    Pouleur, Anne Catherine
    Knappe, Dorit
    Biering-Sorensen, Tor
    Kutyifa, Valentina
    Moss, Arthur
    Stein, Kenneth
    Solomon, Scott D.
    Bijnens, Bart
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2019, 21 (01) : 74 - 85
  • [9] The determinants of clinical outcome and clinical response to CRT are not the same
    Cleland, John G. F.
    Ghio, Stefano
    [J]. HEART FAILURE REVIEWS, 2012, 17 (06) : 755 - 766
  • [10] Cardiac Resynchronization Therapy Are Modern Myths Preventing Appropriate Use?
    Cleland, John G. F.
    Tavazzi, Luigi
    Daubert, Jean-Claude
    Tageldien, Ahmed
    Freemantle, Nick
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2009, 53 (07) : 608 - 611