Integral formula of Minkowski type and new characterization of the Wulff shape

被引:37
作者
He, Yi Jun [1 ,2 ]
Li, Hai Zhong [3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Shanxi Univ, Sch Mathemat Sci, Taiyuan 030006, Peoples R China
[3] Tsinghua Univ, Dept Mathemat Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Wulff shape; F-Weingarten operator; anisotropic principal curvature; r-th anisotropic mean curvature; integral formula of Minkowski type;
D O I
10.1007/s10114-007-7116-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a positive function F on S-n which satisfies a convexity condition, we introduce the r-th anisotropic mean curvature M-r for hypersurfaces in Rn+1 which is a generalization of the usual r-th mean curvature Hr. We get integral formulas of Minkowski type for compact hypersurfaces in Rn+1. We give some new characterizations of the Wulff shape by the use of our integral formulas of Minkowski type, in case F = 1 which reduces to some well- known results.
引用
收藏
页码:697 / 704
页数:8
相关论文
共 17 条
[1]  
Barbosa JLM, 1997, ANN GLOB ANAL GEOM, V15, P277
[2]   Sufficient conditions for constant mean curvature surfaces to be round [J].
Choe, JY .
MATHEMATISCHE ANNALEN, 2002, 323 (01) :143-156
[3]  
Clarenz U, 2004, INTERFACE FREE BOUND, V6, P351
[4]  
Hardy G.H., 1952, Inequalities
[5]  
HSIUNG CC, 1954, B AM MATH SOC, V60, P349
[6]   Geometry and stability of surfaces with constant anisotropic mean curvature [J].
Koiso, M ;
Palmer, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (06) :1817-1852
[7]  
Li HZ, 1998, ACTA MATH SIN, V14, P285
[8]   Global rigidity theorems of hypersurfaces [J].
Li, HZ .
ARKIV FOR MATEMATIK, 1997, 35 (02) :327-351
[9]  
Li HZ, 1996, MATH ANN, V305, P665
[10]  
Montiel Sebastian, 1991, Pitman Monogr. Surveys Pure Appl. Math., V52, P279