Topological sequence entropy for maps of the interval

被引:7
作者
Hric, R [1 ]
机构
[1] Matej Bel Univ, Fac Nat Sci, Dept Math, SK-97401 Banska Bystrica, Slovakia
关键词
adding machine; blowing up orbits; chaotic map; topological sequence entropy;
D O I
10.1090/S0002-9939-99-04799-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A result by Franzova a and Smital shows that a continuous map of the interval into itself is chaotic if and only if its topological sequence entropy relative to a suitable increasing sequence of nonnegative integers is positive. In the present paper we prove that for any increasing sequence of nonnegative integers there exists a chaotic continuous map with zero topological sequence entropy relative to this sequence.
引用
收藏
页码:2045 / 2052
页数:8
相关论文
共 10 条
[1]   A CHARACTERIZATION OF OMEGA-LIMIT SETS OF MAPS OF THE INTERVAL WITH ZERO TOPOLOGICAL-ENTROPY [J].
BRUCKNER, AM ;
SMITAL, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 :7-19
[2]   CHARACTERIZATIONS OF WEAKLY CHAOTIC MAPS OF THE INTERVAL [J].
FEDORENKO, VV ;
SARKOVSKII, AN ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (01) :141-148
[3]   POSITIVE SEQUENCE TOPOLOGICAL-ENTROPY CHARACTERIZES CHAOTIC MAPS [J].
FRANZOVA, N ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1083-1086
[4]  
GOODMAN TNT, 1974, P LOND MATH SOC, V29, P331
[5]  
Gottschalk W, 1955, TOPOLOGICAL DYNAMICS
[6]  
HARRISON J, 1981, LECT NOTES MATH, V898, P154
[7]  
Kolyada S., 1996, Random and Computational Dynamics, V4, P205
[8]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[9]  
Misiurewicz M., 1979, LECT NOTES MATH, V729, P144
[10]   CHAOTIC FUNCTIONS WITH ZERO TOPOLOGICAL-ENTROPY [J].
SMITAL, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (01) :269-282