Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms

被引:14
作者
Cui, Liu [1 ]
Feng, Yanhui [1 ,2 ]
Tan, Peng [1 ]
Zhang, Xinxin [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mech Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Key Lab Energy Saving & Emiss Reduct Met, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; THERMAL-CONDUCTIVITY; TEMPERATURE; DEFECTS; DEPENDENCE; TRANSPORT; CHIRALITY; BEHAVIOR;
D O I
10.1039/c5cp01771h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.
引用
收藏
页码:16476 / 16482
页数:7
相关论文
共 50 条
  • [1] Heat Conduction Simulation in Double-walled Carbon Nanotubes with Intertube Additional Atoms
    Tan, Peng
    Feng, Yanhui
    Cui, Liu
    Zhang, Xinxin
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, 2014, 2014,
  • [2] Bromination of Double-Walled Carbon Nanotubes
    Bulusheva, L. G.
    Okotrub, A. V.
    Flahaut, E.
    Asanov, I. P.
    Gevko, P. N.
    Koroteev, V. O.
    Fedoseeva, Yu. V.
    Yaya, A.
    Ewels, C. P.
    CHEMISTRY OF MATERIALS, 2012, 24 (14) : 2708 - 2715
  • [3] Ferromagnetism of double-walled carbon nanotubes
    Yan, Der-Chung
    Chen, Shih-Yun
    Wu, Maw-Kuen
    Chi, C. C.
    Chao, J. H.
    Green, Malcolm L. H.
    APPLIED PHYSICS LETTERS, 2010, 96 (24)
  • [4] Molecular dynamics simulations of heat conduction in multi-walled carbon nanotubes
    Hu, Guo-Jie
    Cao, Bing-Yang
    MOLECULAR SIMULATION, 2012, 38 (10) : 823 - 829
  • [5] Coupled oscillations of double-walled carbon nanotubes
    Po, Giacomo
    Ghoniem, N. M.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (09)
  • [6] Water transport in double-walled carbon nanotubes
    Ru, Yiqiu
    Su, Jiaye
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 407
  • [7] Thermal buckling of double-walled carbon nanotubes
    Hsu, Jung-Chang
    Lee, Haw-Long
    Chang, Win-Jin
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (10)
  • [8] Controlled driven oscillations of double-walled carbon nanotubes
    Neild, A.
    Ng, T. W.
    Zheng, Q.
    EPL, 2009, 87 (01)
  • [9] Heat conduction in extended X-junctions of single-walled carbon nanotubes
    Yang, Xueming
    Chen, Dongci
    Du, Yarong
    To, Albert C.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2014, 75 (01) : 123 - 129
  • [10] Transient heat conduction in multiwall carbon nanotubes
    Tahani, M.
    Abolbashari, M. H.
    Talebian, S. T.
    Mehrafrooz, B.
    Nik, H. Saberi
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2015, 12 (04): : 711 - 729