Construction of nice nilpotent Lie groups

被引:13
作者
Conti, Diego [1 ]
Rossi, Federico A. [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
关键词
Nilpotent Lie groups; Nice Lie algebras; NILMANIFOLDS; SOLITON; METRICS;
D O I
10.1016/j.jalgebra.2019.01.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We illustrate an algorithm to classify nice nilpotent Lie algebras of dimension n up to a suitable notion of equivalence; applying the algorithm, we obtain complete listings for n <= 9. On every nilpotent Lie algebra of dimension <= 7, we determine the number of inequivalent nice bases, which can be 0, 1, or 2. We show that any nilpotent Lie algebra of dimension n has at most countably many inequivalent nice bases. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:311 / 340
页数:30
相关论文
共 35 条
  • [1] Soliton Almost Kahler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow
    Alberto Fernandez-Culma, Edison
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (04) : 2736 - 2758
  • [2] Complex product structures on 6-dimensional nilpotent Lie algebras
    Andrada, Adrian
    [J]. FORUM MATHEMATICUM, 2008, 20 (02) : 285 - 315
  • [3] Cohomology of D-complex manifolds
    Angella, Daniele
    Rossi, Federico Alberto
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (05) : 530 - 547
  • [4] Bazzoni G, 2015, T AM MATH SOC, V367, P4459
  • [5] On the boundary behavior of left-invariant Hitchin and hypo flows
    Belgun, Florin
    Cortes, Vicente
    Freibert, Marco
    Goertsches, Oliver
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 92 : 41 - 62
  • [6] Cavalcanti G. R., 2004, J. Symplectic Geo, V2, P393, DOI DOI 10.4310/JSG.2004.V2.N3.A5
  • [7] Conti D., ARXIV180508491
  • [8] Einstein nilpotent Lie groups
    Conti, Diego
    Rossi, Federico A.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (03) : 976 - 997
  • [9] The Ricci tensor of almost parahermitian manifolds
    Conti, Diego
    Rossi, Federico A.
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 53 (04) : 467 - 501
  • [10] HARMONIC STRUCTURES AND INTRINSIC TORSION
    Conti, Diego
    Madsen, Thomas Bruun
    [J]. TRANSFORMATION GROUPS, 2015, 20 (03) : 699 - 723