Surface Modification of Fe7S8/C Anode via Ultrathin Amorphous TiO2 Layer for Enhanced Sodium Storage Performance

被引:28
作者
Deng Xianchun [1 ]
Chen Hui [1 ]
Wu Xiangjiang [1 ]
Wang Yun-Xiao [2 ]
Zhong Faping [3 ]
Ai Xinping [1 ]
Yang Hanxi [1 ]
Cao Yuliang [1 ]
机构
[1] Wuhan Univ, Engn Res Ctr Organosilicon Cpds & Mat, Minist Educ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
[2] Univ Wollongong, Inst Superconducting & Elect Mat, Innovat Campus, Wollongong, NSW 2500, Australia
[3] Natl Engn Res Ctr Adv Energy Storage Mat, Changsha 410205, Hunan, Peoples R China
关键词
atomic layer deposition; Fe7S8; anode; interface modification; sodium ion batteries; TiO2; FES-AT-C; LITHIUM-ION BATTERIES; LOW-COST; CYCLING STABILITY; CATHODE MATERIALS; CARBON CLOTH; DEPOSITION; CHALLENGES; NANOSHEETS; ELECTRODE;
D O I
10.1002/smll.202000745
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Iron sulfides with high theoretical capacity and low cost have attracted extensive attention as anode materials for sodium ion batteries. However, the inferior electrical conductivity and devastating volume change and interface instability have largely hindered their practical electrochemical properties. Here, ultrathin amorphous TiO2 layer is constructed on the surface of a metal-organic framework derived porous Fe7S8/C electrode via a facile atomic layer deposition strategy. By virtue of the porous structure and enhanced conductivity of the Fe7S8/C, the electroactive TiO2 layer is expected to effectively improve the electrode interface stability and structure integrity of the electrode. As a result, the TiO2-modified Fe7S8/C anode exhibits significant performance improvement for sodium-ion batteries. The optimal TiO2-modified Fe7S8/C electrode delivers reversible capacity of 423.3 mA h g(-1) after 200 cycles with high capacity retention of 75.3% at 0.2 C. Meanwhile, the TiO2 coating is conducive to construct favorable solid electrolyte interphase, leading to much enhanced initial Coulombic efficiency from 66.9% to 72.3%. The remarkable improvement suggests that the interphase modification holds great promise for high-performance metal sulfide-based anode materials for sodium-ion batteries.
引用
收藏
页数:9
相关论文
共 54 条
[1]   Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage [J].
Ahmed, Bilal ;
Xia, Chuan ;
Alshareef, Husam N. .
NANO TODAY, 2016, 11 (02) :250-271
[2]   Improvement of the Cathode Electrolyte Interphase on P2-Na2/3Ni1/3Mn2/3O2 by Atomic Layer Deposition [J].
Alvarado, Judith ;
Ma, Chuze ;
Wang, Shen ;
Nguyen, Kimberly ;
Kodur, Moses ;
Meng, Ying Shirley .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (31) :26518-26530
[3]   Electrolytes, SEI Formation, and Binders: A Review of Nonelectrode Factors for Sodium-Ion Battery Anodes [J].
Bommier, Clement ;
Ji, Xiulei .
SMALL, 2018, 14 (16)
[4]   Bridging the academic and industrial metrics for next-generation practical batteries [J].
Cao, Yuliang ;
Li, Matthew ;
Lu, Jun ;
Liu, Jun ;
Amine, Khalil .
NATURE NANOTECHNOLOGY, 2019, 14 (03) :200-207
[5]   FeS@tubular mesoporous carbon as high capacity and long cycle life anode materials for lithium- and sodium-ions batteries [J].
Cao, Zhijie ;
Ma, Xiaobo ;
Dong, Wenhao ;
Wang, Hailong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 786 :523-529
[6]   High-Performance Flexible Freestanding Anode with Hierarchical 3D Carbon-Networks/Fe7S8/Graphene for Applicable Sodium-Ion Batteries [J].
Chen, Weihua ;
Zhang, Xixue ;
Mi, Liwei ;
Liu, Chuntai ;
Zhang, Jianmin ;
Cui, Shizhong ;
Feng, Xiangming ;
Cao, Yuliang ;
Shen, Changyu .
ADVANCED MATERIALS, 2019, 31 (08)
[7]   Extremely Small Pyrrhotite Fe7S8 Nanocrystals with Simultaneous Carbon-Encapsulation for High-Performance Na-Ion Batteries [J].
Choi, Min-Jae ;
Kim, Jongsoon ;
Yoo, Jung-Keun ;
Yim, Soonmin ;
Jeon, Jaebeom ;
Jung, Yeon Sik .
SMALL, 2018, 14 (02)
[8]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries [J].
Grayfer, Ekaterina D. ;
Pazhetnov, Egor M. ;
Kozlova, Mariia N. ;
Artemkina, Sofya B. ;
Fedorov, Vladimir E. .
CHEMSUSCHEM, 2017, 10 (24) :4805-4811