Particle aspect-ratio effects on the thermal conductivity of micro- and nanoparticle suspensions

被引:42
作者
Cherkasova, Anna S. [1 ]
Shan, Jerry W. [1 ]
机构
[1] Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2008年 / 130卷 / 08期
关键词
thermal conductivity; suspension; aspect ratio; silicon carbide; effective medium theory;
D O I
10.1115/1.2928050
中图分类号
O414.1 [热力学];
学科分类号
摘要
The influence of particle anisotropy on the effective thermal conductivity of a suspension is experimentally investigated. Suspensions of micron-sized, silicon-carbide particles with varying aspect-ratio distributions were prepared and measured. It is shown that the conductivity of the silicon-carbide suspensions can be quantitatively predicted by the effective medium theory of Nan (1997, "Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance," J. Appl. Phys. 81(10), pp. 6692-6699), provided the volume-weighted aspect ratio of the particles is used. Recent experimental data on multiwalled-nanotube-in-oil suspensions by Yang (2006, "Thermal and Rheological Properties of Carbon Nanotube-in-Oil Dispersions," J. Appl. Phys., 99(11), 114307) are also analyzed and shown to be in at least qualitative agreement with the effective-medium-theory prediction that the thermal conductivity of suspensions is enhanced by large aspect-ratio particles.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Continuous production of aligned carbon nanotubes: a step closer to commercial realization [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Derbyshire, F ;
Qian, D ;
Fan, X ;
Dickey, EC ;
Chen, J .
CHEMICAL PHYSICS LETTERS, 1999, 303 (5-6) :467-474
[2]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[3]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[4]   Thermal conductivity of AlN and SiC thin films [J].
Choi, Sun Rock ;
Kim, Dongsik ;
Choa, Sung-Hoon ;
Lee, Sung-Hoon ;
Kim, Jong-Kuk .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2006, 27 (03) :896-905
[5]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254
[6]   Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method [J].
Choi, Tae-Youl ;
Poulikakos, Dimos ;
Tharian, Joy ;
Sennhauser, Urs .
NANO LETTERS, 2006, 6 (08) :1589-1593
[7]   Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].
Eastman, JA ;
Choi, SUS ;
Li, S ;
Yu, W ;
Thompson, LJ .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :718-720
[8]   THE EFFECT OF PARTICLE-SIZE ON THE THERMAL-CONDUCTIVITY OF ZNS DIAMOND COMPOSITES [J].
EVERY, AG ;
TZOU, Y ;
HASSELMAN, DPH ;
RAJ, R .
ACTA METALLURGICA ET MATERIALIA, 1992, 40 (01) :123-129
[9]   A mathematical treatment of the electric conductivity and capacity of disperse systems I The electric conductivity of a suspension of homogenous spheroids [J].
Frickl, H .
PHYSICAL REVIEW, 1924, 24 (05) :575-587
[10]  
Goldberg Y, 2001, PROPERTIES OF ADVANCED SEMICONDUCTOR MATERIALS: GAN, AIN, INN, BN, SIC, SIGE, P93