Comparing Traditional Methods of Complex Networks Construction in a Wind Farm Production Analysis Problem

被引:0
作者
Cornejo-Bueno, Sara [1 ]
Ioana Chidean, Mihaela [1 ]
Caamano, Antonio J. [1 ]
Prieto, Luis [2 ]
Salcedo-Sanz, Sancho [3 ]
机构
[1] Univ Rey Juan Carlos, Dept Signal Proc & Commun, Madrid, Spain
[2] Iberdrola, Madrid, Spain
[3] Univ Alcala, Dept Signal Proc & Commun, Madrid, Spain
来源
COMPLEX NETWORKS AND THEIR APPLICATIONS VIII, VOL 2 | 2020年 / 882卷
关键词
Climate networks construction; Wind farms; Complex networks construction; Wind power prediction;
D O I
10.1007/978-3-030-36683-4_71
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents a comparison between two methods for complex networks construction (cross-correlation and Mutual Information based), in the assessment of wind speed prediction efficiency at different wind farms in Spain. The approach is accomplished at mesoscale, for wind speed prediction data provided by the Weather Research and Forecasting (WRF) numerical model versus the actual wind speed measurements in the wind farms. Some important differences are found in the complex networks obtained, and the corresponding global measures from them, such as the betweenness and closseness centrality. We have found out that the mutual information method better captures nonlinear relationships of the problem, obtaining complex networks with fewer spurious links than the cross-correlation based method.
引用
收藏
页码:895 / 904
页数:10
相关论文
共 20 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   The South American rainfall dipole: A complex network analysis of extreme events [J].
Boers, Niklas ;
Rheinwalt, Aljoscha ;
Bookhagen, Bodo ;
Barbosa, Henrique M. J. ;
Marwan, Norbert ;
Marengo, Jose ;
Kurths, Juergen .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (20) :7397-7405
[3]   WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal [J].
Carvalho, D. ;
Rocha, A. ;
Gomez-Gesteira, M. ;
Silva Santos, C. .
APPLIED ENERGY, 2014, 117 :116-126
[4]   Spatio-temporal trend analysis of air temperature in Europe and Western Asia using data-coupled clustering [J].
Chidean, Mihaela I. ;
Munoz-Bulnes, Jesus ;
Ramiro-Bargueno, Julio ;
Caamano, Antonio J. ;
Salcedo-Sanz, Sancho .
GLOBAL AND PLANETARY CHANGE, 2015, 129 :45-55
[5]   Global Spatio-Temporal Patterns in Human Migration: A Complex Network Perspective [J].
Davis, Kyle F. ;
D'Odorico, Paolo ;
Laio, Francesco ;
Ridolfi, Luca .
PLOS ONE, 2013, 8 (01)
[6]   The backbone of the climate network [J].
Donges, J. F. ;
Zou, Y. ;
Marwan, N. ;
Kurths, J. .
EPL, 2009, 87 (04)
[7]  
Donges JF, 2009, EUR PHYS J-SPEC TOP, V174, P157, DOI 10.1140/epjst/e2009-01098-2
[8]   Classification of scale-free networks [J].
Goh, KI ;
Oh, E ;
Jeong, H ;
Kahng, B ;
Kim, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12583-12588
[9]   Influence of autocorrelation on the topology of the climate network [J].
Guez, Oded C. ;
Gozolchiani, Avi ;
Havlin, Shlomo .
PHYSICAL REVIEW E, 2014, 90 (06)
[10]   Reliability of Inference of Directed Climate Networks Using Conditional Mutual Information [J].
Hlinka, Jaroslav ;
Hartman, David ;
Vejmelka, Martin ;
Runge, Jakob ;
Marwan, Norbert ;
Kurths, Juergen ;
Palus, Milan .
ENTROPY, 2013, 15 (06) :2023-2045