A Branching Random Walk Seen from the Tip

被引:64
|
作者
Brunet, Eric [1 ]
Derrida, Bernard [1 ]
机构
[1] Univ Paris Diderot, UPMC, Ecole Normale Super, Lab Phys Stat, F-75005 Paris, France
关键词
Branching random walk; Branching Brownian motion; Extreme value statistics; Traveling waves; FRONT PROPAGATION; MINIMAL POSITION; BROWNIAN-MOTION; CONVERGENCE; POLYMERS; EQUATION; MODELS; REM;
D O I
10.1007/s10955-011-0185-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that all the time-dependent statistical properties of the rightmost points of a branching Brownian motion can be extracted from the traveling wave solutions of the Fisher-KPP equation. The distribution of all the distances between the rightmost points has a long time limit which can be understood as the delay of the Fisher-KPP traveling waves when the initial condition is modified. The limiting measure exhibits the surprising property of superposability: the statistical properties of the distances between the rightmost points of the union of two realizations of the branching Brownian motion shifted by arbitrary amounts are the same as those of a single realization. We discuss the extension of our results to more general branching random walks.
引用
收藏
页码:420 / 446
页数:27
相关论文
共 50 条
  • [31] CONVERGENCE IN LAW OF THE MINIMUM OF A BRANCHING RANDOM WALK
    Aidekon, Elie
    ANNALS OF PROBABILITY, 2013, 41 (3A) : 1362 - 1426
  • [32] Maximal displacement of a branching random walk in time-inhomogeneous environment
    Mallein, Bastien
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (10) : 3958 - 4019
  • [33] Lower deviation and moderate deviation probabilities for maximum of a branching random walk
    Chen, Xinxin
    He, Hui
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (04): : 2507 - 2539
  • [34] Limit Theorems for the Minimal Position of a Branching Random Walk in Random Environment
    Zhang, Xiaoyue
    Hou, Wanting
    Hong, Wenming
    MARKOV PROCESSES AND RELATED FIELDS, 2020, 26 (05) : 839 - 860
  • [35] The maximum of a branching random walk with stretched exponential tails
    Dyszewski, Piotr
    Gantert, Nina
    Hoefelsauer, Thomas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02): : 539 - 562
  • [36] Efficient approximation of branching random walk Gibbs measures
    Ho, Fu-Hsuan
    Maillard, Pascal
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [37] The range of simple branching random walk
    Grill, K
    STATISTICS & PROBABILITY LETTERS, 1996, 26 (03) : 213 - 218
  • [38] BRANCHING CAPACITY OF A RANDOM WALK RANGE
    Schapira, Bruno
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2024, 152 (03): : 571 - 603
  • [39] Branching random walk with trapping zones
    Biard, Romain
    Mallein, Bastien
    Rabehasaina, Landy
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (07) : 2341 - 2366
  • [40] A branching random walk among disasters
    Gantert, Nina
    Junk, Stefan
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22