Purine import into malaria parasites as a target for antimalarial drug development

被引:30
|
作者
Frame, I. J. [1 ]
Deniskin, Roman [1 ]
Arora, Avish [1 ]
Akabas, Myles H. [1 ,2 ,3 ]
机构
[1] Albert Einstein Coll Med, Dept Physiol & Biophys, Bronx, NY 10461 USA
[2] Albert Einstein Coll Med, Dept Neurosci, Bronx, NY 10461 USA
[3] Albert Einstein Coll Med, Dept Med, Bronx, NY 10461 USA
来源
MALARIA: ADVANCES IN PATHOPHYSIOLOGY, BIOLOGY, AND DRUG DEVELOPMENT | 2015年 / 1342卷
关键词
purines; nucleoside transporter; malaria; drug development; EQUILIBRATIVE NUCLEOSIDE TRANSPORTER; PLASMODIUM-FALCIPARUM; HUMAN-ERYTHROCYTES; FUNCTIONAL-CHARACTERIZATION; NUCLEOBASE TRANSPORT; PLASMA-MEMBRANE; S-6-(4-NITROBENZYL)-MERCAPTOPURINE RIBOSIDE; SACCHAROMYCES-CEREVISIAE; CYTOKININ BIOSYNTHESIS; LEISHMANIA-DONOVANI;
D O I
10.1111/nyas.12568
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophs. In all life cycle stages, they require purines for RNA and DNA synthesis and other cellular metabolic processes. Purines are imported from the host erythrocyte by equilibrative nucleoside transporters (ENTs). They are processed via purine salvage pathway enzymes to form the required purine nucleotides. The Plasmodium falciparum genome encodes four putative ENTs (PfENT1-4). Genetic, biochemical, and physiologic evidence suggest that PfENT1 is the primary purine transporter supplying the purine salvage pathway. Protein mass spectrometry shows that PfENT1 is expressed in all parasite stages. PfENT1 knockout parasites are not viable in culture at purine concentrations found in human blood (<10 mu M). Thus, PfENT1 is a potential target for novel antimalarial drugs, but no PfENT1 inhibitors have been identified to test the hypothesis. Identifying inhibitors of PfENT1 is an essential step to validate PfENT1 as a potential antimalarial drug target.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 50 条
  • [21] Novel molecular targets for antimalarial drug development
    Sahu, Nitendra K.
    Sahu, Sanjeev
    Kohli, Dharm Veer
    CHEMICAL BIOLOGY & DRUG DESIGN, 2008, 71 (04) : 287 - 297
  • [22] Investment in antimalarial drug development is bearing fruit
    Ashley, Elizabeth
    LANCET INFECTIOUS DISEASES, 2017, 17 (06) : 568 - 570
  • [23] CARBONIC ANHYDRASE IN Plasmodium falciparum: A USEFUL TARGET FOR ANTIMALARIAL DRUG DESIGNING AND MALARIA BLOCKING TRANSMISSION COMPOUNDS
    Agudelo R, Carlos D.
    Corena-McLeod, Maria
    Robledo R, Sara M.
    VITAE-REVISTA DE LA FACULTAD DE QUIMICA FARMACEUTICA, 2010, 17 (01): : 91 - 100
  • [24] The evolution of multiple drug resistance in malaria parasites
    Mackinnon, MJ
    Hastings, IM
    TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 1998, 92 (02) : 188 - 195
  • [25] Fitness of drug-resistant malaria parasites
    Walliker, D
    Hunt, P
    Babiker, H
    ACTA TROPICA, 2005, 94 (03) : 251 - 259
  • [26] The development of malaria parasites in the mosquito midgut
    Bennink, Sandra
    Kiesow, Meike J.
    Pradel, Gabriele
    CELLULAR MICROBIOLOGY, 2016, 18 (07) : 905 - 918
  • [27] Ex Vivo Maturation Assay for Testing Antimalarial Sensitivity of Rodent Malaria Parasites
    Chang, Zi Wei
    Malleret, Benoit
    Russell, Bruce
    Renia, Laurent
    Clasera, Carla
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2016, 60 (11) : 6859 - 6866
  • [28] Drug target identification in protozoan parasites
    Mueller, Joachim
    Hemphill, Andrew
    EXPERT OPINION ON DRUG DISCOVERY, 2016, 11 (08) : 815 - 824
  • [29] An All-Purpose Antimalarial Drug Target
    Guiguemde, W. Armand
    Guy, R. Kiplin
    CELL HOST & MICROBE, 2012, 11 (06) : 555 - 557
  • [30] In silico prediction of antimalarial drug target candidates
    Ludin, Philipp
    Woodcroft, Ben
    Ralph, Stuart A.
    Maeser, Pascal
    INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE, 2012, 2 : 191 - 199