Crooked binomials

被引:20
作者
Bierbrauer, Juergen [1 ]
Kyureghyan, Gohar M. [2 ]
机构
[1] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[2] Otto Von Guericke Univ, Dept Math, Magdeburg, Germany
关键词
crooked functions; APN functions; codes; cyclotomic cosets; preparata codes;
D O I
10.1007/s10623-007-9157-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A function f : GF(2(r)) -> GF(2(r)) is called crooked if the sets {f(x) + f(x + a)vertical bar x is an element of GF(2(r))} is an affine hyperplane for any nonzero a epsilon GF(2(r)). We prove that a crooked binomial function f(x) = x(d)+ ux(e) defined on GF(2(r)) satisfies that both exponents d, e have 2-weights at most 2.
引用
收藏
页码:269 / 301
页数:33
相关论文
共 8 条
[1]  
[Anonymous], 2004, INTRO CODING THEORY
[2]  
Bending T. D., 1998, ELECTRON J COMB, V5, pR34, DOI DOI 10.37236/1372
[3]  
Brouwer A. E., 1993, Designs, Codes and Cryptography, V3, P95, DOI 10.1007/BF01388407
[4]  
BUDAGHYAN L, 2006, P ISIT 2006 SEATTL U
[5]   Codes, Bent Functions and Permutations Suitable for DES-like Cryptosystems [J].
Carlet C. ;
Charpin P. ;
Zinoviev V. .
Designs, Codes and Cryptography, 1998, 15 (2) :125-156
[6]   A new APN function which is not equivalent to a power mapping [J].
Edel, Y ;
Kyureghyan, G ;
Pott, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :744-747
[7]   Crooked maps in F2n [J].
Kyureghyan, Gohar M. .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) :713-726
[8]   Codes, graphs, and schemes from nonlinear functions [J].
van Dam, ER ;
Fon-Der-Flaass, D .
EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (01) :85-98