EEG channel selection strategy for deep learning in emotion recognition

被引:9
作者
Dura, Aleksandra [1 ]
Wosiak, Agnieszka [1 ]
机构
[1] Lodz Univ Technol, Inst Informat Technol, Wolczanska 215, Lodz, Poland
来源
KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021) | 2021年 / 192卷
关键词
emotion recognition; EEG analysis; channel selection; feature selection; deep learning; CNN; convolutional neural network;
D O I
10.1016/j.procs.2021.09.049
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emotions play an important role in everyday life and contribute to physical and mental health. Emotional states can be detected by electroencephalography (EEG signals). Efficient information retrieval from the EEG sensors is a complex and challenging task. Therefore, deep learning methods for EEG signal analysis attract more and more attention. Many researchers emphasize automated feature learning as the motivation for using deep learning approaches. We propose using a limited number of EEG channels as an input for a deep neural network. In the research, we confirm that our electrode selection enhances the learning process of the convolutional neural network. The classification accuracy for the reduced subset of electrodes yields results comparable to the full dataset in a significantly shorter time-the average learning time 58% faster using our proposed strategy. (C) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://crativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of KES International.
引用
收藏
页码:2789 / 2796
页数:8
相关论文
共 26 条
[1]   Deep learning for motor imagery EEG-based classification: A review [J].
Al-Saegh, Ali ;
Dawwd, Shefa A. ;
Abdul-Jabbar, Jassim M. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63
[2]   The neuroscience of positive emotions and affect: Implications for cultivating happiness and wellbeing [J].
Alexander, Rebecca ;
Aragon, Oriana R. ;
Bookwala, Jamila ;
Cherbuin, Nicolas ;
Gatt, Justine M. ;
Kahrilas, Ian J. ;
Kaestner, Niklas ;
Lawrence, Alistair ;
Lowe, Leroy ;
Morrison, Robert G. ;
Mueller, Sven C. ;
Nusslock, Robin ;
Papadelis, Christos ;
Polnaszek, Kelly L. ;
Richter, S. Helene ;
Silton, Rebecca L. ;
Styliadis, Charis .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2021, 121 :220-249
[3]  
Anchieta da Silva P., 2019, U.S. Patent Application, Patent No. 16332
[4]   A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series [J].
Chambon, Stanislas ;
Galtier, Mathieu N. ;
Arnal, Pierrick J. ;
Wainrib, Gilles ;
Gramfort, Alexandre .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2018, 26 (04) :758-769
[5]   Emotion Recognition from Multiband EEG Signals Using CapsNet [J].
Chao, Hao ;
Dong, Liang ;
Liu, Yongli ;
Lu, Baoyun .
SENSORS, 2019, 19 (09)
[6]  
Dura A., 2021, IEEE INT C COMP SCI
[7]  
Hasib Md Musaddaqul, 2018, 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), P104, DOI 10.1109/BHI.2018.8333380
[8]  
Hussein R., 2018, COMPUTING RES REPOSI
[9]   EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation [J].
Jirayucharoensak, Suwicha ;
Pan-Ngum, Setha ;
Israsena, Pasin .
SCIENTIFIC WORLD JOURNAL, 2014,
[10]   DEAP: A Database for Emotion Analysis Using Physiological Signals [J].
Koelstra, Sander ;
Muhl, Christian ;
Soleymani, Mohammad ;
Lee, Jong-Seok ;
Yazdani, Ashkan ;
Ebrahimi, Touradj ;
Pun, Thierry ;
Nijholt, Anton ;
Patras, Ioannis .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2012, 3 (01) :18-31