Surface/interface influence on specific heat capacity of solid, shell and core-shell nanoparticles

被引:25
作者
Lin, Zi-Zhen [1 ]
Huang, Cong-Liang [1 ,2 ]
Huang, Zun [1 ]
Zhen, Wen-Kai [1 ]
机构
[1] China Univ Min & Technol, Sch Elect & Power Engn, Xuzhou 221116, Peoples R China
[2] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
基金
中国国家自然科学基金;
关键词
Specific heat capacity; Core-shell; Nanoencapsulated materials; Shell; Interface; THERMAL INTERFACE MATERIALS; PHONON GAS; CONDUCTIVITY; NANOCRYSTALS; TEMPERATURE; NANOTUBES; EXPANSION; TRANSPORT; SI;
D O I
10.1016/j.applthermaleng.2017.08.104
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we firstly develop the shell and core-shell HC models for the first time. Then, the differential scanning calorimeter (DSC) method is applied to measure HCs of copper nanoparticles, carbon shells and core-shell/Cu-C nanoparticles. Results show that the HC of a carbon shell can be even enlarged more than 30 times than that of the carbon bulk. Comparing experimental results with that predicted by our models, it turns out that our shell HC model could capture the experimental result well, and there is a good agreement between our core-shell HC model and experiments at a low temperature (< 460 K in this paper) where the influence of the interface can be neglected, while the interface greatly reduces the HC of a core-shell structure at a high temperature. This work is expected to provide some information about the influence of surface/interface on the HC of the shell and core-shell structures for their potential applications in energy storage systems, and also provide some physical insights into the HC of a complex nanostructure. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:884 / 888
页数:5
相关论文
共 50 条
[31]   The effects of surface coating on the structural and magnetic properties of CoAg core-shell nanoparticles [J].
Evans, Richard ;
Dorfbauer, Florian ;
Myrasov, Oleg ;
Chubykalo-Fesenko, Oksana ;
Schrefl, Thomas ;
Chantrell, Roy .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (06) :3106-3108
[32]   Controlling interface characteristics by adjusting core-shell structure [J].
Chang, HY ;
Cheng, SY ;
Sheu, CI .
ACTA MATERIALIA, 2004, 52 (18) :5389-5396
[33]   Electrochemical determination of the surface composition of Pd-Pt core-shell nanoparticles [J].
Jeon, Tae-Yeol ;
Yoo, Sung Jong ;
Cho, Yong-Hun ;
Park, Hee-Young ;
Sung, Yung-Eun .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 28 :114-117
[34]   Synthesis of Au@CdS core-shell nanoparticles and their photocatalytic capacity researched by SERS [J].
Wang, Liwei ;
Li, Ruoping ;
Liu, Junhui ;
Han, Junhe ;
Huang, Mingju .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (04) :1847-1855
[35]   Core-shell upconversion nanoparticles with suitable surface modification to overcome endothelial barrier [J].
Lu, Chao ;
Ouyang, Jianying ;
Zhang, Jin .
DISCOVER NANO, 2024, 19 (01)
[36]   Synthesis and characterization of FePt/Au core-shell nanoparticles [J].
de la Presa, P. ;
Multigner, M. ;
Morales, M. P. ;
Rueda, T. ;
Fernandez-Pinel, E. ;
Hernando, A. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 316 (02) :E753-E755
[37]   Misfit dislocation loops in composite core-shell nanoparticles [J].
Gutkin, M. Yu. ;
Kolesnikova, A. L. ;
Krasnitsky, S. A. ;
Romanov, A. E. .
PHYSICS OF THE SOLID STATE, 2014, 56 (04) :723-730
[38]   The Study and Application of Core-Shell Structure Bimetallic Nanoparticles [J].
Wang Rui ;
Zi Xuehong ;
Liu Licheng ;
Dai Hongxing ;
He Hong .
PROGRESS IN CHEMISTRY, 2010, 22 (2-3) :358-366
[39]   Misfit dislocation loops in hollow core-shell nanoparticles [J].
Gutkin, M. Yu. ;
Kolesnikova, A. L. ;
Krasnitckii, S. A. ;
Romanov, A. E. ;
Shalkovskii, A. G. .
SCRIPTA MATERIALIA, 2014, 83 :1-4
[40]   Synthesis and Characterization of FePt/NiO Core-Shell Nanoparticles [J].
Zeynali, Hossein ;
Sebt, Seyed Ali ;
Arabi, Hadi ;
Akbari, Hossein ;
Hosseinpour-Mashkani, Seyed Mostafa ;
Rao, K. Venkateswara .
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2012, 22 (06) :1314-1319