Surface/interface influence on specific heat capacity of solid, shell and core-shell nanoparticles

被引:25
作者
Lin, Zi-Zhen [1 ]
Huang, Cong-Liang [1 ,2 ]
Huang, Zun [1 ]
Zhen, Wen-Kai [1 ]
机构
[1] China Univ Min & Technol, Sch Elect & Power Engn, Xuzhou 221116, Peoples R China
[2] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
基金
中国国家自然科学基金;
关键词
Specific heat capacity; Core-shell; Nanoencapsulated materials; Shell; Interface; THERMAL INTERFACE MATERIALS; PHONON GAS; CONDUCTIVITY; NANOCRYSTALS; TEMPERATURE; NANOTUBES; EXPANSION; TRANSPORT; SI;
D O I
10.1016/j.applthermaleng.2017.08.104
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we firstly develop the shell and core-shell HC models for the first time. Then, the differential scanning calorimeter (DSC) method is applied to measure HCs of copper nanoparticles, carbon shells and core-shell/Cu-C nanoparticles. Results show that the HC of a carbon shell can be even enlarged more than 30 times than that of the carbon bulk. Comparing experimental results with that predicted by our models, it turns out that our shell HC model could capture the experimental result well, and there is a good agreement between our core-shell HC model and experiments at a low temperature (< 460 K in this paper) where the influence of the interface can be neglected, while the interface greatly reduces the HC of a core-shell structure at a high temperature. This work is expected to provide some information about the influence of surface/interface on the HC of the shell and core-shell structures for their potential applications in energy storage systems, and also provide some physical insights into the HC of a complex nanostructure. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:884 / 888
页数:5
相关论文
共 50 条
[1]   Wedge disclinations in the shell of a core-shell nanowire within the surface/interface elasticity [J].
Kalehbasti, S. Rezazadeh ;
Gutkin, M. Yu. ;
Shodja, H. M. .
MECHANICS OF MATERIALS, 2014, 68 :45-63
[2]   The influence of shell parameters on phonons in core-shell nanoparticles: a resonant Raman study [J].
Dzhagan, V. M. ;
Valakh, M. Ya ;
Raevska, O. E. ;
Stroyuk, O. L. ;
Kuchmiy, S. Ya ;
Zahn, D. R. T. .
NANOTECHNOLOGY, 2009, 20 (36)
[3]   Surface Plasmon Resonance in Bimetallic Core-Shell Nanoparticles [J].
Zhang, Chao ;
Chen, Bao-Qin ;
Li, Zhi-Yuan ;
Xia, Younan ;
Chen, Yue-Gang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (29) :16836-16845
[4]   Vibrational properties and specific heat of core-shell Ag-Au icosahedral nanoparticles [J].
Sauceda, Huziel E. ;
Garzon, Ignacio L. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (42) :28054-28059
[5]   Surface/interface effects on elastic behavior of an edge dislocation in the shell of a core-shell nanowire [J].
Gutkin, M. Yu. ;
Kalehbasti, S. Rezazadeh ;
Shodja, H. M. .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2013, 41 :86-100
[6]   Synthesis of core-shell nanoparticles with a Pt nanoparticle core and a silica shell [J].
Oh, Jong-Gil ;
Kim, Hansung .
CURRENT APPLIED PHYSICS, 2013, 13 (01) :130-136
[7]   Exploring magnetic disorder in inverted core-shell nanoparticles: the role of surface anisotropy and core/shell coupling [J].
Ccahuana, Damaso ;
De Biasi, Emilio .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (05)
[8]   The core-shell junctionless MOSFET [J].
Cristoloveanu, Sorin ;
Ghibaudo, Gerard .
SOLID-STATE ELECTRONICS, 2023, 200
[9]   Interface and Interphase in Polymer Nanocomposites with Bare and Core-Shell Gold Nanoparticles [J].
Power, Albert J. ;
Remediakis, Ioannis N. ;
Harmandaris, Vagelis .
POLYMERS, 2021, 13 (04) :1-28
[10]   Photon upconversion in core-shell nanoparticles [J].
Chen, Xian ;
Peng, Denfeng ;
Ju, Qiang ;
Wang, Feng .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (06) :1318-1330