Rigorous Full-Vectorial Analysis of VCSEL Using FDFD Method

被引:0
作者
Nashed, A., I [1 ]
Li, Z. Q. [1 ]
Li, Z. M. Simon [1 ]
Lestrade, Michel [1 ]
Xiao, Y. G. [1 ]
Zhou, Y. J. [1 ]
机构
[1] Crosslight Software Inc, 230-3410 Lougheed Hwy, Vancouver, BC V5M 2A4, Canada
来源
SEMICONDUCTOR LASERS AND APPLICATIONS VIII | 2018年 / 10812卷
关键词
VCSEL; FDFD; Surface Relief; Crosslight; MAXWELLS EQUATIONS;
D O I
10.1117/12.2500933
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the optical problem of the Vertical Cavity Surface Emitting Laser (VCSEL) is analyzed in details. Taking advantage of the VCSEL layer structure, Maxwell's equation is discretized on uniform Yee grid, and the rigorous full vectorial Finite Difference Frequency Domain (FDFD) method was used to formulate and solve the complex eigenvalue problem. The full vectorial solver is well suited for the fundamental as well as the higher-order modes and includes different field polarization. The method is demonstrated for advanced VCSEL incorporating the surface reliefs and the oxide layer. In order to compare with the experimental structure, a superposition of the VCSEL modes is used to construct the Linearly Polarized (LP) mode.
引用
收藏
页数:5
相关论文
共 11 条
[1]   Surface Relief Versus Standard VCSELs: A Comparison Between Experimental and Hot-Cavity Model Results [J].
Debernardi, Pierluigi ;
Kroner, Andrea ;
Rinaldi, Fernando ;
Michalzik, Rainer .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (03) :828-837
[2]   High-power VCSEL's:: Single devices and densely packed 2-D-arrays [J].
Grabherr, M ;
Miller, M ;
Jäger, R ;
Michalzik, R ;
Martin, U ;
Unold, HJ ;
Ebeling, KJ .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (03) :495-502
[3]   Intracavity contacts for low-threshold oxide-confined vertical-cavity surface-emitting lasers [J].
Huffaker, DL ;
Deppe, DG .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (08) :934-936
[4]   56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s [J].
Moser, P. ;
Lott, J. A. ;
Wolf, P. ;
Larisch, G. ;
Li, H. ;
Ledentsov, N. N. ;
Bimberg, D. .
ELECTRONICS LETTERS, 2012, 48 (20) :1276-+
[5]   85 °C error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers [J].
Moser, P. ;
Wolf, P. ;
Mutig, A. ;
Larisch, G. ;
Unrau, W. ;
Hofmann, W. ;
Bimberg, D. .
APPLIED PHYSICS LETTERS, 2012, 100 (08)
[6]   Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides [J].
Obayya, SSA ;
Rahman, BMA ;
Grattan, KTV ;
El-Mikati, HA .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002, 20 (06) :1054-1060
[7]   Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell's equations solvers [J].
Shin, Wonseok ;
Fan, Shanhui .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (08) :3406-3431
[8]   Conservative modeling of 3-D electromagnetic fields .2. Biconjugate gradient solution and an accelerator [J].
Smith, JT .
GEOPHYSICS, 1996, 61 (05) :1319-1324
[9]   Conservative modeling of 3-D electromagnetic fields .1. Properties and error analysis [J].
Smith, JT .
GEOPHYSICS, 1996, 61 (05) :1308-1318
[10]   High-speed 850 nm VCSELs operating error free up to 57 Gbit/s [J].
Westbergh, P. ;
Haglund, E. P. ;
Haglund, E. ;
Safaisini, R. ;
Gustavsson, J. S. ;
Larsson, A. .
ELECTRONICS LETTERS, 2013, 49 (16) :1021-1022