Work-in-Progress: Hierarchical Ensemble Learning for Resource-Aware FPGA Computing

被引:0
作者
Wang, Hongfei [1 ]
Li, Jianwen [1 ]
He, Kun [1 ]
Cai, Wenjie [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Peoples R China
来源
2018 INTERNATIONAL CONFERENCE ON HARDWARE/SOFTWARE CODESIGN AND SYSTEM SYNTHESIS (CODES+ISSS) | 2018年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页数:2
相关论文
共 13 条
[1]   INVITED: Accelerator Design for Deep Learning Training [J].
Agrawal, Ankur ;
Chen, Chia-Yu ;
Choi, Jungwook ;
Gopalakrishnan, Kailash ;
Oh, Jinwook ;
Shukla, Sunil ;
Srinivasan, Viji ;
Venkataramani, Swagath ;
Zhang, Wei .
PROCEEDINGS OF THE 2017 54TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2017,
[2]  
[Anonymous], 2012, Scaling up Machine LearningParallel and Distributed Approaches
[3]  
[Anonymous], 2018, ISSCC
[4]  
Breiman L., 2001, Machine Learning, V45, P5
[5]  
Chen Chaochao., 2013, Prognostics and Health Management (PHM), 2013 IEEE Conference on, P1
[6]   Random Forest Architectures on FPGA for Multiple Applications [J].
Lin, Xiang ;
Blanton, R. D. ;
Thomas, Donald E. .
PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2017 (GLSVLSI' 17), 2017, :415-418
[7]  
Narayanan R, 2007, DES AUT TEST EUROPE, P189
[8]  
Ren X, 2015, DATE
[9]   Ensemble-based classifiers [J].
Rokach, Lior .
ARTIFICIAL INTELLIGENCE REVIEW, 2010, 33 (1-2) :1-39
[10]  
Struharik R, 2015, I S INTELL SYST INFO, P101, DOI 10.1109/SISY.2015.7325359