The removal of Cu(II) and Pb(II) ions from aqueous solutions by temperature-sensitive hydrogels based on N-isopropylacrylamide and itaconic acid

被引:4
作者
Ozkahraman, Bengi [1 ]
Yildirim, Eren [2 ]
Emik, Serkan [2 ]
Acar, Isil [2 ]
机构
[1] Hitit Univ, Fac Engn, Polymer Engn Dept, Corun, Turkey
[2] Istanbul Univ Cerrahpasa, Fac Engn, Chem Engn Dept, Istanbul, Turkey
关键词
Heavy metal removal; N-isopropylacrylamide; itaconic acid; hydrogel; temperature-sensitive; adsorption; HEAVY-METAL IONS; ADSORPTION-ISOTHERM MODELS; PB2+ IONS; GRAFT-COPOLYMERS; ACTIVATED CARBON; METHYLENE-BLUE; SORPTION; PH; CHITOSAN; CELLULOSE;
D O I
10.3233/MGC-210056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study deals with the potential use of poly(N-isopropylacrylamide-co-itaconic acid) temperature-sensitive hydrogels as an adsorbent for the removal of Cu(II) and Pb(II) ions from aqueous solutions. For this aim, the adsorption properties of hydrogels were examined by adsorption capacities, adsorption isotherm, and adsorption kinetics experiments. To describe the adsorption characteristics of hydrogels, the obtained experimental data were evaluated by Langmuir, Freundlich, Redlich-Peterson, and Dubinin-Radushkevich isotherm models. Adsorption kinetics experiments were carried out not only in single systems but also in binary systems where both ions were at equal initial concentrations for competitive adsorption studies. To predict the behaviors of the competitive and non-competitive adsorption process of ions onto hydrogels, the experimental adsorption data were analyzed by the pseudo-first-order model and the pseudo-second-order model. According to non-competitive ion removal findings, the adsorption capacities followed order Cu(II) > Pb(II) for all hydrogels, and the pseudo-second-order kinetic model explained the adsorption properties of the hydrogels. Competitive ion removal studies showed that all hydrogels were selective to Cu(II) ion. Furthermore, in the case of comparative investigations both of competitive Cu(II) and competitive Pb(II) removal by hydrogels, the metal ion removal capacity of N10 hydrogel was found as a bit higher than that of N7.5 and N5 in 48 h. That is, as the acidic group content increased in the hydrogel network, the adsorption capacity values also increased. In addition, the reusability of temperature-sensitive hydrogels seems possible without regeneration or after regenerating with acid, in case the temperature is increased above the LCST. Furthermore, even if it cannot be reused, these hydrogels that retain metal ions reach very small volumes by shrinking when the LSCT is exceeded, and thus they can be eliminated more easily than other conventional gels due to their small size. As a result, this temperature-sensitive hydrogel may propose as an alternative environmentally friendly adsorbent candidate for can be used for water purification and wastewater treatment.
引用
收藏
页码:389 / 407
页数:19
相关论文
共 68 条
[1]   Study on adsorption, regeneration, and reuse of crosslinked chitosan graft copolymers for Cu(II) ion removal from aqueous solutions [J].
Bal, Ayca ;
Ozkahraman, Bengi ;
Acar, Isil ;
Ozyurek, Mustafa ;
Guclu, Gamze .
DESALINATION AND WATER TREATMENT, 2014, 52 (16-18) :3246-3255
[2]   Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents [J].
Betancourt, Tania ;
Pardo, Juan ;
Soo, Ken ;
Peppas, Nicholas A. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 93A (01) :175-188
[3]   Molecular imprinting within hydrogels [J].
Byrne, ME ;
Park, K ;
Peppas, NA .
ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (01) :149-161
[4]   Surface modification of lyocell fibres by graft copolymerization of thermo-sensitive poly-N-isopropylacrylamide [J].
Carrillo, Fernando ;
Defays, Boris ;
Colom, Xavier .
EUROPEAN POLYMER JOURNAL, 2008, 44 (12) :4020-4028
[5]   Error Analysis of Adsorption Isotherm Models for Acid Dyes onto Bamboo Derived Activated Carbon [J].
Chan, L. S. ;
Cheung, W. H. ;
Allen, S. J. ;
McKay, G. .
CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2012, 20 (03) :535-542
[6]   The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium [J].
Chen, Arh-Hwang ;
Yang, Cheng-Yu ;
Chen, Chia-Yun ;
Chen, Chia-Yuan ;
Chen, Chia-Wen .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 163 (2-3) :1068-1075
[7]   Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite [J].
Chen, Hao ;
Wang, Aiqin .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 165 (1-3) :223-231
[8]   Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: Equilibrium isotherms, kinetic and thermodynamic studies [J].
Chen, J. J. ;
Ahmad, A. L. ;
Ooi, B. S. .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2013, 1 (03) :339-348
[9]   Temperature and pH-dependent swelling and copper(II) adsorption of poly(N-isopropylacrylamide) copolymer hydrogel [J].
Cheng, Jinjin ;
Shan, Guorong ;
Pan, Pengju .
RSC ADVANCES, 2015, 5 (76) :62091-62100
[10]  
Coen N, 2001, J PATHOL, V195, P293