Extensions of the duality between minimal surfaces and maximal surfaces

被引:15
作者
Lee, Hojoo [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
关键词
Mean curvature; Bundle curvature; Duality; MEAN-CURVATURE SURFACES; MINKOWSKI SPACE;
D O I
10.1007/s10711-010-9539-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As a generalization of the classical duality between minimal graphs in E (3) and maximal graphs in L (3), we construct the duality between graphs of constant mean curvature H in Bianchi-Cartan-Vranceanu space E (3)(kappa, tau) and spacelike graphs of constant mean curvature tau in Lorentzian Bianchi-Cartan-Vranceanu space L (3)(kappa, H).
引用
收藏
页码:373 / 386
页数:14
相关论文
共 21 条
[1]  
Abresch U., 2005, Mat. Contemp., V28, P1
[2]   Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces [J].
Albujer, Alma L. ;
Alias, Luis J. .
JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (05) :620-631
[3]   A duality result between the minimal surface equation and the maximal surface equation [J].
Alías, LJ ;
Palmer, B .
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2001, 73 (02) :161-164
[4]   The Dirichlet problem for constant mean curvature surfaces in Heisenberg space [J].
Alias, Luis J. ;
Dajczer, Marcos ;
Rosenberg, Harold .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (04) :513-522
[5]   How many maximal surfaces do correspond to one minimal surface? [J].
Araujo, Henrique ;
Leite, Marta Luiza .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 :165-175
[6]  
Bekkar M., 2007, Differ. Geom. Dyn. Syst, V9, P21
[7]   SO(2)-INVARIANT MINIMAL AND CONSTANT MEAN-CURVATURE SURFACES IN 3-DIMENSIONAL HOMOGENEOUS SPACES [J].
CADDEO, R ;
PIU, P ;
RATTO, A .
MANUSCRIPTA MATHEMATICA, 1995, 87 (01) :1-12
[8]  
Calabi E., 1970, Proc. Symp. Pure Math., VXV, P223
[9]  
CHOI HOI, 1990, J DIFFER GEOM, V32, P775
[10]  
DANIEL B, INT MATH RE IN PRESS