Provably secure and high-rate quantum key distribution with time-bin qudits

被引:223
作者
Islam, Nurul T. [1 ,2 ]
Lim, Charles Ci Wen [3 ,4 ]
Cahall, Clinton [2 ,5 ]
Kim, Jungsang [6 ]
Gauthier, Daniel J. [7 ]
机构
[1] Duke Univ, Dept Phys, Durham, NC 27708 USA
[2] Duke Univ, Fitzpatrick Inst Photon, Durham, NC 27708 USA
[3] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[4] Natl Univ Singapore, Dept Elect & Comp Engn, 4 Engn Dr 3, Singapore 117583, Singapore
[5] Duke Univ, Dept Elect Engn, Durham, NC 27708 USA
[6] IonQ Inc, 4505 Campus Dr, College Pk, MD 20730 USA
[7] Ohio State Univ, Dept Phys, 191 West Woodruff Ave, Columbus, OH 43210 USA
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 11期
关键词
D O I
10.1126/sciadv.1701491
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The security of conventional cryptography systems is threatened in the forthcoming era of quantum computers. Quantum key distribution (QKD) features fundamentally proven security and offers a promising option for quantum-proof cryptography solution. Although prototype QKD systems over optical fiber have been demonstrated over the years, the key generation rates remain several orders of magnitude lower than current classical communication systems. In an effort toward a commercially viable QKD system with improved key generation rates, we developed a discrete-variable QKD system based on time-bin quantum photonic states that can generate provably secure cryptographic keys at megabit-per-second rates over metropolitan distances. We use high-dimensional quantum states that transmit more than one secret bit per received photon, alleviating detector saturation effects in the superconducting nanowire single-photon detectors used in our system that feature very high detection efficiency (of more than 70%) and low timing jitter (of less than 40 ps). Our system is constructed using commercial off-the-shelf components, and the adopted protocol can be readily extended to free-space quantum channels. The security analysis adopted to distill the keys ensures that the demonstrated protocol is robust against coherent attacks, finite-size effects, and a broad class of experimental imperfections identified in our system.
引用
收藏
页数:6
相关论文
共 40 条
  • [21] Concise security bounds for practical decoy-state quantum key distribution
    Lim, Charles Ci Wen
    Curty, Marcos
    Walenta, Nino
    Xu, Feihu
    Zbinden, Hugo
    [J]. PHYSICAL REVIEW A, 2014, 89 (02):
  • [22] Experimental comparison of two quantum computing architectures
    Linke, Norbert M.
    Maslov, Dmitri
    Roetteler, Martin
    Debnath, Shantanu
    Figgatt, Caroline
    Landsman, Kevin A.
    Wright, Kenneth
    Monroe, Christopher
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (13) : 3305 - 3310
  • [23] Decoy state quantum key distribution
    Lo, HK
    Ma, XF
    Chen, K
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (23)
  • [24] Secure quantum key distribution
    Lo, Hoi-Kwong
    Curty, Marcos
    Tamaki, Kiyoshi
    [J]. NATURE PHOTONICS, 2014, 8 (08) : 595 - 604
  • [25] Efficient decoy-state quantum key distribution with quantified security
    Lucamarini, M.
    Patel, K. A.
    Dynes, J. F.
    Froehlich, B.
    Sharpe, A. W.
    Dixon, A. R.
    Yuan, Z. L.
    Penty, R. V.
    Shields, A. J.
    [J]. OPTICS EXPRESS, 2013, 21 (21): : 24550 - 24565
  • [26] Practical decoy state for quantum key distribution
    Ma, XF
    Qi, B
    Zhao, Y
    Lo, HK
    [J]. PHYSICAL REVIEW A, 2005, 72 (01)
  • [27] Marsili F, 2013, NAT PHOTONICS, V7, P210, DOI [10.1038/NPHOTON.2013.13, 10.1038/nphoton.2013.13]
  • [28] METODI TS, 2005, P 38 ANN IEEE ACM IN
  • [29] High-dimensional quantum cryptography with twisted light
    Mirhosseini, Mohammad
    Magana-Loaiza, Omar S.
    O'Sullivan, Malcolm N.
    Rodenburg, Brandon
    Malik, Mehul
    Lavery, Martin P. J.
    Padgett, Miles J.
    Gauthier, Daniel J.
    Boyd, Robert W.
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17 : 1 - 12
  • [30] High-dimensional quantum key distribution using dispersive optics
    Mower, Jacob
    Zhang, Zheshen
    Desjardins, Pierre
    Lee, Catherine
    Shapiro, Jeffrey H.
    Englund, Dirk
    [J]. PHYSICAL REVIEW A, 2013, 87 (06):