Non-uniform dependence on initial data for the two-component fractional shallow water wave system

被引:4
|
作者
Zhou, Shouming [1 ]
Pan, Shihang [1 ]
Mu, Chunlai [2 ]
Luo, Honglin [1 ]
机构
[1] Chongqing Normal Univ, Coll Math Sci, Chongqing 401331, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
关键词
Two-component fractional; Camassa-Holm system; Non-uniform dependence; Sobolev space; BLOW-UP PHENOMENA; CAMASSA-HOLM SYSTEMS; WELL-POSEDNESS; PERSISTENCE PROPERTIES; GLOBAL EXISTENCE; EQUATION; CONTINUITY; BREAKING;
D O I
10.1016/j.na.2019.111714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on continuity of a two-component high-order Camassa-Holm system, which was proposed by Escher and Lyons (2015). We know that its solutions depend continuously on their initial data from the local well-posedness results. In present paper, we further show that such dependence is not uniformly continuous in Sobolev spaces H-s1 (R) x H-s2 (R) with s(1) > r + 1/2 and 1/2 < s(2) <= s(1) - 1 <= s(2) + 2r - 2, r is an element of Z(+), which improves the corresponding results for higher-order Camassa-Holm in Tang and Liu (2015) and Wang and Li (2019) to two-component and the lowest Sobolev Space. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Non-uniform dependence on initial data for the two-component Novikov system
    Wang, Haiquan
    Fu, Ying
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (02)
  • [2] Non-uniform continuous dependence on initial data for a two-component Novikov system in Besov space
    Wu, Xing
    Cao, Jie
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [3] Non-uniform dependence on initial data of a modified periodic two-component Camassa-Holm system
    Lv, Guangying
    Wang, Xiaohuan
    ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 2015, 95 (05): : 444 - 456
  • [4] Non-uniform dependence on periodic initial data for the two-component Fornberg-Whitham system in Besov spaces
    Dutta, Prerona
    Keyfitz, Barbara Lee
    AIMS MATHEMATICS, 2024, 9 (09): : 25284 - 25296
  • [5] Non-uniform dependence of the data-to-solution map for the two-component Fornberg–Whitham system
    Yanghai Yu
    Jinlu Li
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 59 - 76
  • [6] Non-uniform continuity on initial data for the two-component b-family system in Besov space
    Wu, Xing
    Li, Cui
    Cao, Jie
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (02): : 547 - 563
  • [7] Non-uniform continuity on initial data for the two-component b-family system in Besov space
    Xing Wu
    Cui Li
    Jie Cao
    Monatshefte für Mathematik, 2023, 201 : 547 - 563
  • [8] Non-uniform dependence of the data-to-solution map for the two-component Fornberg-Whitham system
    Yu, Yanghai
    Li, Jinlu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (01) : 59 - 76
  • [9] Well-posedness of short time solutions and non-uniform dependence on the initial data for a shallow water wave model in critical Besov space
    Zhou, Changtai
    Xiao, Honglin
    Lai, Shaoyong
    MONATSHEFTE FUR MATHEMATIK, 2024, 205 (02): : 415 - 431
  • [10] Non-uniform dependence on initial data for the μ − b equation
    Guangying Lv
    Peter Y. H. Pang
    Mingxin Wang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1543 - 1554