A quantitative McDiarmid's inequality for geometrically ergodic Markov chains

被引:7
作者
Havet, Antoine [1 ]
Lerasle, Matthieu [2 ]
Moulines, Eric [1 ]
Vernet, Elodie [1 ]
机构
[1] Ecole Polytech, CMAP, Palaiseau, France
[2] CNRS, CREST, Paris, France
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2020年 / 25卷
关键词
concentration inequalities; Markov chains; geometric ergodicity; coupling;
D O I
10.1214/20-ECP286
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We state and prove a quantitative version of the bounded difference inequality for geometrically ergodic Markov chains. Our proof uses the same martingale decomposition as [2] but, compared to this paper, the exact coupling argument is modified to fill a gap between the strongly aperiodic case and the general aperiodic case.
引用
收藏
页数:11
相关论文
共 10 条
  • [1] A tail inequality for suprema of unbounded empirical processes with applications to Markov chains
    Adamczak, Radoslaw
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1000 - 1034
  • [2] Corff S.L., 2018, ARXIV180808104
  • [3] Subgaussian concentration inequalities for geometrically ergodic Markov chains
    Dedecker, Jerome
    Gouezel, Sebastien
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 12
  • [4] Douc R., 2018, MARKOV CHAINS
  • [5] Ghosal S, 2017, CA ST PR MA, V44
  • [6] McDiarmid C., 1989, SURVEYS COMBINATORIC, P148, DOI DOI 10.1017/CBO9781107359949.008
  • [7] Concentration inequalities for Markov chains by Marton couplings and spectral methods
    Paulin, Daniel
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20
  • [8] Roberts G. O., 2004, Probability Surveys, V1, P20, DOI [DOI 10.1214/154957804100000024, 10.1214/154957804100000024]
  • [9] On the Frequentist Properties of Bayesian Nonparametric Methods
    Rousseau, Judith
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 3, 2016, 3 : 211 - 231
  • [10] Posterior consistency for nonparametric hidden Markov models with finite state space
    Vernet, Elodie
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 717 - 752