Griffiths positivity for Bismut curvature and its behaviour along Hermitian curvature flows

被引:3
作者
Barbaro, Giuseppe [1 ]
机构
[1] Univ Sapienza, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
关键词
Hermitian curvature flows; Bismut connection; Holomorphic bisectional curvature; Linear Hopf manifolds; Six-dimensional Calabi-Yau solvmanifolds; COMPLEX STRUCTURES; MANIFOLDS;
D O I
10.1016/j.geomphys.2021.104323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we study a positivity notion for the curvature of the Bismut connection; more precisely, we study the notion of Bismut-Griffiths-positivity for complex Hermitian non-Kahler manifolds. Since the Kahler-Ricci flow preserves and regularizes the usual Griffiths positivity we investigate the behaviour of the Bismut-Griffiths-positivity under the action of the Hermitian curvature flows. In particular we study two concrete classes of examples, namely, linear Hopf manifolds and six-dimensional Calabi-Yau solvmanifolds with holomorphically-trivial canonical bundle. From these examples we identify some Hermitian curvature flows which do not preserve Bismut-Griffiths-non-negativity. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 22 条
[1]   Classification of abelian complex structures on 6-dimensional Lie algebras [J].
Andrada, A. ;
Barberis, M. L. ;
Dotti, I. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 83 :232-255
[2]  
Angella Daniele, 2021, COMMUN ANAL GEOM
[3]  
Boothby W., 1958, Michigan Math. J, V5, P229
[4]   Invariant Complex Structures on 6-Nilmanifolds: Classification, Frolicher Spectral Sequence and Special Hermitian Metrics [J].
Ceballos, M. ;
Otal, A. ;
Ugarte, L. ;
Villacampa, R. .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) :252-286
[5]   Six-Dimensional Solvmanifolds with Holomorphically Trivial Canonical Bundle [J].
Fino, Anna ;
Otal, Antonio ;
Ugarte, Luis .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (24) :13757-13799
[6]  
Fino Anna, 2021, IN PRESS
[7]   GEOMETRY OF HERMITIAN MANIFOLDS [J].
Liu, Ke-Feng ;
Yang, Xiao-Kui .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (06)
[8]   RICCI CURVATURES ON HERMITIAN MANIFOLDS [J].
Liu, Kefeng ;
Yang, Xiaokui .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (07) :5157-5196
[9]  
Otal Antonio, 2014, THESIS U ZARAGOZA
[10]   Complex structures on nilpotent Lie algebras [J].
Salamon, SM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 157 (2-3) :311-333