Global Inverse Optimal Control With Guaranteed Convergence Rates of Input Affine Nonlinear Systems

被引:42
作者
Nakamura, Nami [1 ]
Nakamura, Hisakazu [1 ]
Nishitani, Hirokazu [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Ikoma 6300192, Japan
关键词
Control Lyapunov function; convergence rate; coordinate transformation; nonlinear systems; optimal control; LYAPUNOV FUNCTIONS; STABILIZATION; SUBJECT;
D O I
10.1109/TAC.2010.2053731
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In earlier works, global inverse optimal controllers were proposed for input affine nonlinear systems with given control Lyapunov functions. However, these controllers do not provide information about the convergence rates. If the systems have local homogeneous approximations, we can employ homogeneous controllers, which locally asymptotically stabilize the origin and specify the convergence rates. However, homogeneous controllers generally do not attain global stability for nonhomogeneous systems. In this paper, we design global inverse optimal controllers with guaranteed local convergence rates by utilizing local homogeneity of input affine nonlinear systems. If we do not consider inverse optimality, we can liberally adjust the sector margins. We also clarify that local convergence rates and sector margins are invariant under coordinate transformations.
引用
收藏
页码:358 / 369
页数:12
相关论文
共 37 条
[1]   Homogeneous approximation, recursive observer design, and output feedback [J].
Andrieu, Vincent ;
Praly, Laurent ;
Astolfi, Alessandro .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1814-1850
[2]  
[Anonymous], 1991, LECT NOTES PURE APPL
[3]  
[Anonymous], 2011, Constructive Nonlinear Control
[4]  
BACCIOTTI A., 2005, Liapunov Functions and Stability in Control Theory, V2nd
[5]  
BROCKETT RW, 1979, P 7 TRIENN WORLD C, P1115
[6]   Constructive nonsmooth stabilization of triangular systems [J].
Celikovsky, S ;
Aranda-Bricaire, E .
SYSTEMS & CONTROL LETTERS, 1999, 36 (01) :21-37
[7]   Locally optimal and robust backstepping design [J].
Ezal, K ;
Pan, ZG ;
Kokotovic, PV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (02) :260-271
[8]  
Faubourg L, 2000, ESAIM CONTR OPTIM CA, V5, P293, DOI 10.1051/cocv:2000112
[9]  
Freeman R. A., 1996, Robust Nonlinear Control Design
[10]   Asymptotically stable walking for biped robots: Analysis via systems with impulse effects [J].
Grizzle, JW ;
Abba, G ;
Plestan, F .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (01) :51-64