Haptic Handshank - A Handheld Multimodal Haptic Feedback Controller for Virtual Reality

被引:7
作者
Aziz, K. M. Arafat [1 ]
Luo, Hu [1 ]
Asma, Lehiany [1 ]
Xu, Weiliang [2 ]
Zhang, Yuru [1 ,3 ]
Wang, Dangxiao [1 ,3 ,4 ]
机构
[1] Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Univ Auckland, Dept Mech Engn, Auckland 1142, New Zealand
[3] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
[4] Peng Cheng Lab, Shenzhen 518055, Peoples R China
来源
2020 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR 2020) | 2020年
关键词
Multimodal; handheld device; haptic feedback; controller; virtual reality; DISPLAY;
D O I
10.1109/ISMAR50242.2020.00047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared to wearable devices, handheld haptic devices are promising for large scale virtual reality applications because of their portability and capability of supporting large workspace haptic interaction. However, it remains a challenge to render multimodal haptic stimuli in handheld devices due to space confinement. In this paper, we present a modular approach to build a Multimodal Handheld Haptic Controller called "Haptic Handshank" that includes a thumb feedback component, a palm feedback component, and a motion tracking component. In the thumb feedback component, a compact pneumatically-driven silicone airbag is utilized to simulate softness, and a flexible membrane based on the electro-vibration principle which covers the top portion of the airbag for rendering virtual textures. In the palm feedback component, vibrational motors and Peltier devices are embedded into the device's body for rendering vibrotactile flow and distributing thermal stimuli. In the motion tracking component, an HTC-Vive tracker is mounted on the bottom of the controller's handle to enable 6-DOF palm motion tracking. The performance of the handheld device is evaluated through quantitative experimental studies, which validate the ability of the device to simulate multimodal haptic sensations in accordance with diverse hand manipulation gestures such as enclosure, static contact, rubbing, squeezing and shaking of a cup of cold drink in 3D virtual space.
引用
收藏
页码:239 / 250
页数:12
相关论文
共 36 条
[21]  
Murakami Takaki, 2017, ACM SIGGRAPH 2017 PO, P1, DOI DOI 10.1145/3102163.3102225
[22]   Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives [J].
Pacchierotti, Claudio ;
Sinclair, Stephen ;
Solazzi, Massimiliano ;
Frisoli, Antonio ;
Hayward, Vincent ;
Prattichizzo, Domenico .
IEEE TRANSACTIONS ON HAPTICS, 2017, 10 (04) :580-600
[23]   ThermoVR: Exploring Integrated Thermal Haptic Feedback with Head Mounted Displays [J].
Peiris, Roshan Lalintha ;
Peng, Wei ;
Chen, Zikun ;
Chan, Liwei ;
Minamizawa, Kouta .
PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), 2017, :5452-5456
[24]   Modeling of Soft Fiber-Reinforced Bending Actuators [J].
Polygerinos, Panagiotis ;
Wang, Zheng ;
Overvelde, Johannes T. B. ;
Galloway, Kevin C. ;
Wood, Robert J. ;
Bertoldi, Katia ;
Walsh, Conor J. .
IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (03) :778-789
[25]  
Provancher WilliamR., 2014, IQT Quarterly, V6, P18
[26]  
Scilingo EP, 2010, IEEE T HAPTICS, V3, P109, DOI [10.1109/TOH.2010.2, 10.1109/ToH.2010.2]
[27]   TACTUAL DISCRIMINATION OF SOFTNESS [J].
SRINIVASAN, MA ;
LAMOTTE, RH .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 73 (01) :88-101
[28]  
Stanley AA, 2013, 2013 WORLD HAPTICS CONFERENCE (WHC), P25, DOI 10.1109/WHC.2013.6548379
[29]  
Stevens JC, 1998, SOMATOSENS MOT RES, V15, P13
[30]  
Takeuchi Yuta, 2012, P ACM VIRT REAL INT, DOI 10.1145/2331714.2331749