Lagrangian submanifolds attaining equality in the improved Chen's inequality

被引:20
作者
Bolton, J. [1 ]
Vrancken, L.
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Univ Valenciennes, LAMATH, ISTV2, F-59313 Valenciennes 9, France
关键词
Lagrangian submanifold; complex projective space; Chen inequality;
D O I
10.36045/bbms/1179839222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [7] Oprea gave an improved version of Chen's inequality for Lagrangian submanifolds of CPn(4). For minimal submanifolds this inequality coincides with a previous version proved in [5]. We consider here those non-minimal 3-dimensional Lagrangian submanifolds in CP3(4) attaining at all points equality in the improved Chen inequality. We show how all such submanifolds may be obtained starting from a minimal Lagrangian surface in CP2(4).
引用
收藏
页码:311 / 315
页数:5
相关论文
共 9 条
  • [1] From surfaces in the 5-sphere to 3-manifolds in complex projective 3-space
    Bolton, J
    Scharlach, C
    Vrancken, L
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (03) : 465 - 475
  • [2] Bolton J., 2001, TOHOKU MATH PUBLICAT, V20, P23
  • [3] Hamiltonian-minimal Lagrangian submanifolds in complex space forms
    Castro, Ildefonso
    Li, Haizhong
    Urbano, Francisco
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (01) : 43 - 63
  • [4] TOTALLY-REAL SUBMANIFOLDS OF CPN SATISFYING A BASIC EQUALITY
    CHEN, BY
    DILLEN, F
    VERSTRAELEN, L
    VRANCKEN, L
    [J]. ARCHIV DER MATHEMATIK, 1994, 63 (06) : 553 - 564
  • [5] SOME PINCHING AND CLASSIFICATION-THEOREMS FOR MINIMAL SUBMANIFOLDS
    CHEN, BY
    [J]. ARCHIV DER MATHEMATIK, 1993, 60 (06) : 568 - 578
  • [6] An exotic totally real minimal immersion of S-3 in CP3 and its characterisation
    Chen, BY
    Dillen, F
    Verstraelen, L
    Vrancken, L
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 : 153 - 165
  • [7] Montealegre CR, 2001, J MATH SOC JPN, V53, P603
  • [8] OPREA T, 2005, ARXIVMATHDG0511087
  • [9] RECKZIEGEL H, 1985, LECT NOTES MATH, V1156, P264