Lagrangian submanifolds attaining equality in the improved Chen's inequality

被引:20
作者
Bolton, J. [1 ]
Vrancken, L.
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Univ Valenciennes, LAMATH, ISTV2, F-59313 Valenciennes 9, France
关键词
Lagrangian submanifold; complex projective space; Chen inequality;
D O I
10.36045/bbms/1179839222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [7] Oprea gave an improved version of Chen's inequality for Lagrangian submanifolds of CPn(4). For minimal submanifolds this inequality coincides with a previous version proved in [5]. We consider here those non-minimal 3-dimensional Lagrangian submanifolds in CP3(4) attaining at all points equality in the improved Chen inequality. We show how all such submanifolds may be obtained starting from a minimal Lagrangian surface in CP2(4).
引用
收藏
页码:311 / 315
页数:5
相关论文
共 9 条
[1]   From surfaces in the 5-sphere to 3-manifolds in complex projective 3-space [J].
Bolton, J ;
Scharlach, C ;
Vrancken, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (03) :465-475
[2]  
Bolton J., 2001, TOHOKU MATH PUBLICAT, V20, P23
[3]   Hamiltonian-minimal Lagrangian submanifolds in complex space forms [J].
Castro, Ildefonso ;
Li, Haizhong ;
Urbano, Francisco .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (01) :43-63
[4]   TOTALLY-REAL SUBMANIFOLDS OF CPN SATISFYING A BASIC EQUALITY [J].
CHEN, BY ;
DILLEN, F ;
VERSTRAELEN, L ;
VRANCKEN, L .
ARCHIV DER MATHEMATIK, 1994, 63 (06) :553-564
[5]   SOME PINCHING AND CLASSIFICATION-THEOREMS FOR MINIMAL SUBMANIFOLDS [J].
CHEN, BY .
ARCHIV DER MATHEMATIK, 1993, 60 (06) :568-578
[6]   An exotic totally real minimal immersion of S-3 in CP3 and its characterisation [J].
Chen, BY ;
Dillen, F ;
Verstraelen, L ;
Vrancken, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :153-165
[7]  
Montealegre CR, 2001, J MATH SOC JPN, V53, P603
[8]  
OPREA T, 2005, ARXIVMATHDG0511087
[9]  
RECKZIEGEL H, 1985, LECT NOTES MATH, V1156, P264