Techno-economic evaluation of coal-based polygeneration systems of synthetic fuel and power with CO2 recovery

被引:67
作者
Lin Hu [1 ]
Jin Hongguang [1 ]
Gao Lin
Han Wei
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, Grad Univ, Beijing 100190, Peoples R China
关键词
Polygeneration system; Synthetic fuel; CO2; recovery; Economic performance; NATURAL-GAS DECARBONIZATION; COMBINED CYCLES; EMISSION; PLANTS; COST;
D O I
10.1016/j.enconman.2010.06.068
中图分类号
O414.1 [热力学];
学科分类号
摘要
Being abundant of coal and short of oil and gas, China heavily depends on coal, which leads to the challenge to efficiently producing synthetic fuels based on coal with lower CO2 emission. In this paper, polygeneration systems with and without CO2 recovery are analyzed from the techno-economic viewpoint. The results show that energy penalty plays the important role in the cost penalty for CO2 recovery. With system integration, the polygeneration technology can achieve the trade-off between primary installed capital cost and fuel saving, which can effectively reduce the cost penalty for CO2 avoidance. Compared to the pulverized-coal power system and MEOH single-product system, the polygeneration system with CO2 recovery can get the cost penalty as low as 3.1 $/t-CO2. Compared to the polygeneration system without CO2 recovery, the cost penalty may be near zero. Considering the trend of learning-by-doing, products cost of the polygeneration system has double dropping potential as that of the traditional methanol production system and IGCC system. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:274 / 283
页数:10
相关论文
共 27 条
[1]  
[Anonymous], 2001, CLIM CHANG 2001
[2]  
[Anonymous], 2005, Prepared by Working Group III of the Intergovernmental Panel on Climate Change
[3]  
Berg David R, 2007, BUSINESS CASE COAL G
[4]   Comparison of two CO2 removal options in combined cycle power plants [J].
Bolland, O ;
Mathieu, P .
ENERGY CONVERSION AND MANAGEMENT, 1998, 39 (16-18) :1653-1663
[5]  
CELIK F, 2005, P 7 INT C GREENH GAS, V2, P1053
[6]   Shift reactors and physical absorption for low-CO2 emission IGCCs [J].
Chiesa, P ;
Consonni, S .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 1999, 121 (02) :295-305
[7]  
CHIESA P, 1998, 98GT384 ASME
[8]  
Gang Xu, 2007, THESIS CHINESE ACAD
[9]  
Gao L., 2005, THESIS CHINESE ACAD
[10]  
*IEA, 2003, CO2 EM FUEL COMB 199