Continuous Flow Synthesis of Bimetallic AuPd Catalysts for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid

被引:19
|
作者
Cattaneo, Stefano [1 ,2 ]
Bonincontro, Danilo [3 ]
Bere, Takudzwa [1 ]
Kiely, Christopher J. [1 ,4 ]
Hutchings, Graham J. [1 ]
Dimitratos, Nikolaos [1 ,3 ]
Albonetti, Stefania [3 ]
机构
[1] Cardiff Univ, Sch Chem, Cardiff Catalysis Inst, Cardiff CF10 3AT, Wales
[2] Univ Milan, Dipartimento Chim, Via Golgi 19, I-20133 Milan, Italy
[3] Univ Bologna, Toso Montanari Dept Ind Chem, Viale Risorgimento 4, I-40136 Bologna, Italy
[4] Lehigh Univ, Dept Mat Sci & Engn, 5 East Packer Ave, Bethlehem, PA 18015 USA
关键词
Bimetallic; Gold; Palladium; HMF; Oxidation; FDCA; AEROBIC OXIDATION; GOLD CATALYSTS; BIOMASS; CONVERSION; CHEMICALS; FUELS; TRANSFORMATION; NANOPARTICLES; ENERGY; CARBON;
D O I
10.1002/cnma.201900704
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The production of 2,5-furandicarboxylic acid (FDCA) from the selective oxidation of 5-hydroxymethylfurfural (HMF) is a critical step in the production of biopolymers from biomass-derived materials. In this study, we report the catalytic performance of monometallic Au and Pd, and bimetallic AuPd nanoparticles with different Au : Pd molar ratios synthesised under continuous flow conditions using a millifluidic set-up and subsequently deposited onto titanium dioxide as the chosen support. This synthetic technique provided a better control over mean particle size and metal alloy composition, that resulted in higher FDCA yield when the catalysts were compared to similar batch-synthesised materials. A 99% FDCA yield was obtained with the millifluidic-prepared AuPd/TiO2 catalyst (Au : Pd molar composition of 75 : 25) after being calcined and reduced at 200 degrees C. The heat treatment caused a partial removal of the protective ligand (polyvinyl alcohol) encapsulating the nanoparticles and so induced stronger metal-support interactions. The catalyst reusability was also tested, and showed limited particle sintering after five reaction cycles.
引用
收藏
页码:420 / 426
页数:7
相关论文
共 50 条
  • [41] Highly Effective Non-Noble MnO2 Catalysts for 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid
    Alvarez-Hernandez, Debora
    Megias-Sayago, Cristina
    Penkova, Anna
    Centeno, Miguel Angel
    Ivanova, Svetlana
    CHEMSUSCHEM, 2024, 17 (14)
  • [42] Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid
    Totaro, Grazia
    Sisti, Laura
    Marchese, Paola
    Colonna, Martino
    Romano, Angela
    Gioia, Claudio
    Vannini, Micaela
    Celli, Annamaria
    CHEMSUSCHEM, 2022, 15 (13)
  • [43] Inexpensive but Highly Efficient Co-Mn Mixed-Oxide Catalysts for Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Rao, Kasanneni Tirumala Venkateswara
    Rogers, Jennifer Lorraine
    Souzanchi, Sadra
    Dessbesell, Luana
    Ray, Madhumita Bhowmick
    Xu, Chunbao
    CHEMSUSCHEM, 2018, 11 (18) : 3323 - 3334
  • [44] Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural
    Zuo, Xiaobin
    Venkitasubramanian, Padmesh
    Martin, Kevin J.
    Subramaniam, Bala
    CHEMSUSCHEM, 2022, 15 (13)
  • [45] Advances in the Energy-Saving Electro-Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Ren, Yujie
    Fan, Shilin
    Yu, Xiao
    Shi, Shaoqi
    Wang, Jinggang
    Zeng, Jia
    Zhang, Jian
    Chen, Chunlin
    ADVANCED SUSTAINABLE SYSTEMS, 2025,
  • [46] Kinetics of homogeneous 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid with Co/Mn/Br catalyst
    Zuo, Xiaobin
    Chaudhari, Amit S.
    Snavely, Kirk
    Niu, Fenghui
    Zhu, Hongda
    Martin, Kevin J.
    Subramaniam, Bala
    AICHE JOURNAL, 2017, 63 (01) : 162 - 171
  • [47] Electrocatalytic Oxidation of 5-Hydroxymethylfurfural into the Monomer 2,5-Furandicarboxylic Acid using Mesostructured Nickel Oxide
    Holzhaeuser, Fabian Joschka
    Janke, Tobias
    Oeztas, Fatma
    Broicher, Cornelia
    Palkovits, Regina
    ADVANCED SUSTAINABLE SYSTEMS, 2020, 4 (10)
  • [48] Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids
    Chen, Ruru
    Xin, Jiayu
    Yan, Dongxia
    Dong, Huixian
    Lu, Xingmei
    Zhang, Suojiang
    CHEMSUSCHEM, 2019, 12 (12) : 2715 - 2724
  • [49] A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions
    Siankevich, Sviatlana
    Savoglidis, Georgios
    Fei, Zhaofu
    Laurenczy, Gabor
    Alexander, Duncan T. L.
    Yan, Ning
    Dyson, Paul J.
    JOURNAL OF CATALYSIS, 2014, 315 : 67 - 74
  • [50] Hard-template preparation of Au/CeO2 mesostructured catalysts and their activity for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Lolli, Alice
    Amadori, Rossella
    Lucarelli, Carlo
    Cutrufello, M. Giorgia
    Rombi, Elisabetta
    Cavani, Fabrizio
    Albonetti, Stefania
    MICROPOROUS AND MESOPOROUS MATERIALS, 2016, 226 : 466 - 475