Continuous Flow Synthesis of Bimetallic AuPd Catalysts for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid

被引:19
|
作者
Cattaneo, Stefano [1 ,2 ]
Bonincontro, Danilo [3 ]
Bere, Takudzwa [1 ]
Kiely, Christopher J. [1 ,4 ]
Hutchings, Graham J. [1 ]
Dimitratos, Nikolaos [1 ,3 ]
Albonetti, Stefania [3 ]
机构
[1] Cardiff Univ, Sch Chem, Cardiff Catalysis Inst, Cardiff CF10 3AT, Wales
[2] Univ Milan, Dipartimento Chim, Via Golgi 19, I-20133 Milan, Italy
[3] Univ Bologna, Toso Montanari Dept Ind Chem, Viale Risorgimento 4, I-40136 Bologna, Italy
[4] Lehigh Univ, Dept Mat Sci & Engn, 5 East Packer Ave, Bethlehem, PA 18015 USA
关键词
Bimetallic; Gold; Palladium; HMF; Oxidation; FDCA; AEROBIC OXIDATION; GOLD CATALYSTS; BIOMASS; CONVERSION; CHEMICALS; FUELS; TRANSFORMATION; NANOPARTICLES; ENERGY; CARBON;
D O I
10.1002/cnma.201900704
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The production of 2,5-furandicarboxylic acid (FDCA) from the selective oxidation of 5-hydroxymethylfurfural (HMF) is a critical step in the production of biopolymers from biomass-derived materials. In this study, we report the catalytic performance of monometallic Au and Pd, and bimetallic AuPd nanoparticles with different Au : Pd molar ratios synthesised under continuous flow conditions using a millifluidic set-up and subsequently deposited onto titanium dioxide as the chosen support. This synthetic technique provided a better control over mean particle size and metal alloy composition, that resulted in higher FDCA yield when the catalysts were compared to similar batch-synthesised materials. A 99% FDCA yield was obtained with the millifluidic-prepared AuPd/TiO2 catalyst (Au : Pd molar composition of 75 : 25) after being calcined and reduced at 200 degrees C. The heat treatment caused a partial removal of the protective ligand (polyvinyl alcohol) encapsulating the nanoparticles and so induced stronger metal-support interactions. The catalyst reusability was also tested, and showed limited particle sintering after five reaction cycles.
引用
收藏
页码:420 / 426
页数:7
相关论文
共 50 条
  • [21] Characterization and performance of carbon supported platinum-bismuth bimetallic catalysts tested in 5-hydroxymethylfurfural aerobic oxidation to 2,5-furandicarboxylic acid
    Diaz-Maizkurrena, P.
    Requies, J.
    Iriondo, A.
    Macias-Villasevil, M.
    BIOMASS & BIOENERGY, 2025, 192
  • [22] Mechanism Insights into the Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over MnO2 Catalysts
    Yao, Yi-Fan
    Wang, Gui-Chang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (07): : 3818 - 3826
  • [23] Enhanced Basicity of MnOx-Supported Ru for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Pal, Priyanka
    Saravanamurugan, Shunmugavel
    CHEMSUSCHEM, 2022, 15 (17)
  • [24] Solvent-dependent selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under neat conditions
    Liu, Kai-Jian
    Zeng, Tang-Yu
    Zeng, Jia-Le
    Gong, Shao-Feng
    He, Jun-Yi
    Lin, Ying-Wu
    Tan, Jia-Xi
    Cao, Zhong
    He, Wei-Min
    CHINESE CHEMICAL LETTERS, 2019, 30 (12) : 2304 - 2308
  • [25] Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst
    Wang, Ke-Feng
    Liu, Chun-lei
    Sui, Kun-yan
    Guo, Chen
    Liu, Chun-Zhao
    CHEMBIOCHEM, 2018, 19 (07) : 654 - 659
  • [26] Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions
    Liu, Bing
    Ren, Yongshen
    Zhang, Zehui
    GREEN CHEMISTRY, 2015, 17 (03) : 1610 - 1617
  • [27] Highly efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using bimetallic Pt-Cu alloy nanoparticles as catalysts
    Cheng, Xiaomeng
    Li, Shaopeng
    Liu, Shulin
    Xin, Yu
    Yang, Junjuan
    Chen, Bingfeng
    Liu, Huizhen
    CHEMICAL COMMUNICATIONS, 2022, 58 (08) : 1183 - 1186
  • [28] Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production-From mechanism to catalysts design
    Jiang, Xiaoli
    Li, Wei
    Liu, Yanxia
    Zhao, Lin
    Chen, Zhikai
    Zhang, Lan
    Zhang, Yagang
    Yun, Sining
    SUSMAT, 2023, 3 (01): : 21 - 43
  • [29] Sulfidation of nickel foam with enhanced electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Wang, Wei
    Kong, Fanhao
    Zhang, Zhe
    Yang, Lan
    Wang, Min
    DALTON TRANSACTIONS, 2021, 50 (31) : 10922 - 10927
  • [30] Chemocatalytic Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic Acid Over Nickel Cobalt Oxide
    Prasad, Shivshankar
    Kumar, Ajay
    Dutta, Suman
    Ahmad, Ejaz
    CHEMCATCHEM, 2024, 16 (20)