Continuous Flow Synthesis of Bimetallic AuPd Catalysts for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid

被引:21
|
作者
Cattaneo, Stefano [1 ,2 ]
Bonincontro, Danilo [3 ]
Bere, Takudzwa [1 ]
Kiely, Christopher J. [1 ,4 ]
Hutchings, Graham J. [1 ]
Dimitratos, Nikolaos [1 ,3 ]
Albonetti, Stefania [3 ]
机构
[1] Cardiff Univ, Sch Chem, Cardiff Catalysis Inst, Cardiff CF10 3AT, Wales
[2] Univ Milan, Dipartimento Chim, Via Golgi 19, I-20133 Milan, Italy
[3] Univ Bologna, Toso Montanari Dept Ind Chem, Viale Risorgimento 4, I-40136 Bologna, Italy
[4] Lehigh Univ, Dept Mat Sci & Engn, 5 East Packer Ave, Bethlehem, PA 18015 USA
关键词
Bimetallic; Gold; Palladium; HMF; Oxidation; FDCA; AEROBIC OXIDATION; GOLD CATALYSTS; BIOMASS; CONVERSION; CHEMICALS; FUELS; TRANSFORMATION; NANOPARTICLES; ENERGY; CARBON;
D O I
10.1002/cnma.201900704
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The production of 2,5-furandicarboxylic acid (FDCA) from the selective oxidation of 5-hydroxymethylfurfural (HMF) is a critical step in the production of biopolymers from biomass-derived materials. In this study, we report the catalytic performance of monometallic Au and Pd, and bimetallic AuPd nanoparticles with different Au : Pd molar ratios synthesised under continuous flow conditions using a millifluidic set-up and subsequently deposited onto titanium dioxide as the chosen support. This synthetic technique provided a better control over mean particle size and metal alloy composition, that resulted in higher FDCA yield when the catalysts were compared to similar batch-synthesised materials. A 99% FDCA yield was obtained with the millifluidic-prepared AuPd/TiO2 catalyst (Au : Pd molar composition of 75 : 25) after being calcined and reduced at 200 degrees C. The heat treatment caused a partial removal of the protective ligand (polyvinyl alcohol) encapsulating the nanoparticles and so induced stronger metal-support interactions. The catalyst reusability was also tested, and showed limited particle sintering after five reaction cycles.
引用
收藏
页码:420 / 426
页数:7
相关论文
共 50 条
  • [1] A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Peng, Yani
    Qiu, Boya
    Ding, Shengzhe
    Hu, Min
    Zhang, Yuxin
    Jiao, Yilai
    Fan, Xiaolei
    Parlett, Christopher M. A.
    CHEMPLUSCHEM, 2024, 89 (01):
  • [2] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Zheng, Lufan
    Zhao, Junqi
    Du, Zexue
    Zong, Baoning
    Liu, Haichao
    SCIENCE CHINA-CHEMISTRY, 2017, 60 (07) : 950 - 957
  • [3] On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts
    Davis, Sara E.
    Zope, Bhushan N.
    Davis, Robert J.
    GREEN CHEMISTRY, 2012, 14 (01) : 143 - 147
  • [4] Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnOx-CeO2 composite catalysts
    Han, Xuewang
    Li, Chaoqun
    Liu, Xiaohui
    Xia, Qineng
    Wang, Yanqin
    GREEN CHEMISTRY, 2017, 19 (04) : 996 - 1004
  • [5] Bimetallic Co-Mn catalyzed chemselective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Zhu, Rui
    Gao, Fang
    Li, Xinglong
    MOLECULAR CATALYSIS, 2025, 580
  • [6] Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles
    Chadderdon, David J.
    Xin, Le
    Qi, Ji
    Qiu, Yang
    Krishna, Phani
    More, Karren L.
    Li, Wenzhen
    GREEN CHEMISTRY, 2014, 16 (08) : 3778 - 3786
  • [7] Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over MnFe2O4 catalyst
    Gawade, Anil B.
    Nakhate, Akhil V.
    Yadav, Ganapati D.
    CATALYSIS TODAY, 2018, 309 : 119 - 125
  • [8] Recent Advances in Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Heterogeneous Catalysts
    Ma, Zhiming
    Wang, Lei
    Li, Guangyu
    Song, Tao
    CATALYSTS, 2024, 14 (02)
  • [9] Preparation of 2,5-furandicarboxylic acid through continuous flow oxidation of 5-hydroxymethylfurfural under hypoxic condition
    Jiang, Bei
    Zhang, Ling
    Wang, Wenjing
    Qin, Xin
    Xu, Shenyan
    Che, Chunyu
    Zhang, Chuanqi
    Wang, Wenzhong
    APPLIED CATALYSIS A-GENERAL, 2025, 696
  • [10] Characterization and performance of carbon supported platinum-bismuth bimetallic catalysts tested in 5-hydroxymethylfurfural aerobic oxidation to 2,5-furandicarboxylic acid
    Diaz-Maizkurrena, P.
    Requies, J.
    Iriondo, A.
    Macias-Villasevil, M.
    BIOMASS & BIOENERGY, 2025, 192