Nonlinear stress relaxation of transiently crosslinked biopolymer networks

被引:7
作者
Chen, Sihan [1 ,2 ]
Broedersz, Chase P. [3 ,4 ,5 ]
Markovich, Tomer [2 ]
MacKintosh, Fred C. [1 ,2 ,6 ,7 ]
机构
[1] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[2] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[3] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
[4] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Ctr NanoSci, D-80333 Munich, Germany
[6] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[7] Rice Univ, Dept Chem, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
VISCOELASTIC PROPERTIES; SEMIFLEXIBLE POLYMERS; BEHAVIOR; MODEL; MECHANICS; DYNAMICS; CELLS;
D O I
10.1103/PhysRevE.104.034418
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A long-standing puzzle in the rheology of living cells is the origin of the experimentally observed longtime stress relaxation. The mechanics of the cell is largely dictated by the cytoskeleton, which is a biopolymer network consisting of transient crosslinkers, allowing for stress relaxation over time. Moreover, these networks are internally stressed due to the presence of molecular motors. In this work we propose a theoretical model that uses a mode-dependent mobility to describe the stress relaxation of such prestressed transient networks. Our theoretical predictions agree favorably with experimental data of reconstituted cytoskeletal networks and may provide an explanation for the slow stress relaxation observed in cells.
引用
收藏
页数:14
相关论文
共 50 条
[1]  
Alberts B., 2017, MOL BIOL CELL, DOI [10.1201/9781315735368, DOI 10.1201/9781315735368]
[2]  
[Anonymous], 1988, International Series of Monographs on Physics
[3]   Power laws in microrheology experiments on living cells:: Comparative analysis and modeling [J].
Balland, Martial ;
Desprat, Nicolas ;
Icard, Delphine ;
Fereol, Sophie ;
Asnacios, Atef ;
Browaeys, Julien ;
Henon, Sylvie ;
Gallet, Francois .
PHYSICAL REVIEW E, 2006, 74 (02)
[4]  
Bonakdar N, 2016, NAT MATER, V15, P1090, DOI [10.1038/NMAT4689, 10.1038/nmat4689]
[5]  
Bray D., 2001, Cell movements: From molecules to motility
[6]   Modeling semiflexible polymer networks [J].
Broedersz, C. P. ;
MacKintosh, F. C. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (03) :995-1036
[7]   Cross-Link-Governed Dynamics of Biopolymer Networks [J].
Broedersz, Chase P. ;
Depken, Martin ;
Yao, Norman Y. ;
Pollak, Martin R. ;
Weitz, David A. ;
MacKintosh, Frederick C. .
PHYSICAL REVIEW LETTERS, 2010, 105 (23)
[8]   Cytoskeletal remodelling and slow dynamics in the living cell [J].
Bursac, P ;
Lenormand, G ;
Fabry, B ;
Oliver, M ;
Weitz, DA ;
Viasnoff, V ;
Butler, JP ;
Fredberg, JJ .
NATURE MATERIALS, 2005, 4 (07) :557-561
[9]   Semiflexible polymer network: A view from inside [J].
Caspi, A ;
Elbaum, M ;
Granek, R ;
Lachish, A ;
Zbaida, D .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :1106-1109
[10]   Reversible stress softening of actin networks [J].
Chaudhuri, Ovijit ;
Parekh, Sapun H. ;
Fletcher, Daniel A. .
NATURE, 2007, 445 (7125) :295-298