Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement Learning

被引:38
|
作者
Cai, Peide [1 ]
Wang, Hengli [1 ]
Huang, Huaiyang [1 ]
Liu, Yuxuan [1 ]
Liu, Ming [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
关键词
Reinforcement learning; imitation learning; model learning for control; autonomous racing; uncertainty awareness;
D O I
10.1109/LRA.2021.3097345
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Autonomous car racing is a challenging task in the robotic control area. Traditional modular methods require accurate mapping, localization and planning, which makes them computationally inefficient and sensitive to environmental changes. Recently, deep-learning-based end-to-end systems have shown promising results for autonomous driving/racing. However, they are commonly implemented by supervised imitation learning (IL), which suffers from the distribution mismatch problem, or by reinforcement learning (RL), which requires a huge amount of risky interaction data. In this work, we present a general deep imitative reinforcement learning approach (DIRL), which successfully achieves agile autonomous racing using visual inputs. The driving knowledge is acquired from both IL and model-based RL, where the agent can learn from human teachers as well as perform self-improvement by safely interacting with an offline world model. We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation. The evaluation results demonstrate that our method outperforms previous IL and RL methods in terms of sample efficiency and task performance. Demonstration videos are available at https://caipeide.github.io/autorace-dirl/.
引用
收藏
页码:7262 / 7269
页数:8
相关论文
共 50 条
  • [31] Vision-Based Autonomous Landing of a Multi-Copter Unmanned Aerial Vehicle using Reinforcement Learning
    Lee, Seongheon
    Shim, Taemin
    Kim, Sungjoong
    Park, Junwoo
    Hong, Kyungwoo
    Bang, Hyochoong
    2018 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2018, : 108 - 114
  • [32] Vision-Based Autonomous Navigation Using Supervised Learning Techniques
    Souza, Jefferson R.
    Pessin, Gustavo
    Osorio, Fernando S.
    Wolf, Denis F.
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, PT I, 2011, 363 : 11 - 20
  • [33] Vision-Based Reinforcement Learning using Approximate Policy Iteration
    Shaker, Marwan R.
    Yue, Shigang
    Duckett, Tom
    ICAR: 2009 14TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS, VOLS 1 AND 2, 2009, : 594 - 599
  • [34] 3D robotic navigation using a vision-based deep reinforcement learning model
    Zieliński, P.
    Markowska-Kaczmar, U.
    Applied Soft Computing, 2021, 110
  • [35] 3D robotic navigation using a vision-based deep reinforcement learning model
    Zielinski, P.
    Markowska-Kaczmar, U.
    APPLIED SOFT COMPUTING, 2021, 110
  • [36] Vision-Based Uncertainty-Aware Lane Keeping Strategy Using Deep Reinforcement Learning
    Kim, Myounghoe
    Seo, Joohwan
    Lee, Mingoo
    Choi, Jongeun
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2021, 143 (08):
  • [37] Vision-based Obstacle Avoidance Using Deep Learning
    Gaya, Joel O.
    Goncalves, Lucas T.
    Duarte, Amanda C.
    Zanchetta, Breno
    Drews-, Paulo, Jr.
    Botelho, Silvia S. C.
    PROCEEDINGS OF 13TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 4TH BRAZILIAN SYMPOSIUM ON ROBOTICS - LARS/SBR 2016, 2016, : 7 - 12
  • [38] Vision-Based Robotic Grasping in Cluttered Scenes via Deep Reinforcement Learning
    Meng, Jiaming
    Geng, Zongsheng
    Zhao, Dongdong
    Yan, Shi
    2024 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS, ICARM 2024, 2024, : 765 - 770
  • [39] Driverless Car: Autonomous Driving Using Deep Reinforcement Learning In Urban Environment
    Fayjie, Abdur R.
    Hossain, Sabir
    Oualid, Doukhi
    Lee, Deok-Jin
    2018 15TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2018, : 896 - 901
  • [40] Autonomous driving in traffic with end-to-end vision-based deep learning
    Paniego, Sergio
    Shinohara, Enrique
    Canas, Josemaria
    NEUROCOMPUTING, 2024, 594