Minimizing total variation flow

被引:43
作者
Andreau, F
Ballester, C
Caselles, V
Mazón, JM
机构
[1] Univ Valencia, Dept Anal, E-46100 Valencia, Spain
[2] Univ Pompeu Fabra, Dept Technol, Barcelona 08002, Spain
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 331卷 / 11期
关键词
D O I
10.1016/S0764-4442(00)01729-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and uniqueness of weak solutions for the minimizing Total variation flow with initial data in L(f) under Neumann boundary conditions. We prove that the H(N-1) measure of the boundaries of level sets of the solution decreases with time, as one would expect. We also prove that local maxima (minima) strictly decrease (increase) their level with time. We shall also consider the Dirichlet problem which presents some particular difficulties for general initial data in L(1). (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:867 / 872
页数:6
相关论文
共 6 条
  • [1] ANDREU F, 2000, IN PRESS DIFFER INTE
  • [2] ANDREU F, 2000, IN PRESS J FUNCT ANA
  • [3] [Anonymous], 1970, MATH USSR SB
  • [4] Anzellotti G., 1983, ANN MAT PUR APPL, V4, P293
  • [5] BENILAN P, 1991, LECT NOTES PURE APPL, V135, P41
  • [6] NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS
    RUDIN, LI
    OSHER, S
    FATEMI, E
    [J]. PHYSICA D, 1992, 60 (1-4): : 259 - 268