DUAL HYPERCYCLIC EXTENSION FOR AN OPERATOR ON A HILBERT SUBSPACE

被引:0
作者
Chan, Kit C. [1 ]
Kadel, Gokul R. [2 ]
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2015年 / 41卷 / 04期
关键词
Adjoint operators; dual hypercyclic operator; extension; hypercyclic vector; orthogonal decomposition; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a closed nontrivial subspace of a separable, infinite dimensional Hilbert space H with dim(H/M) = infinity. We show that a bounded linear operator A : M -> M has a dual hypercyclic extension T : H -> H if and only if its adjoint A* : M -> M is hypercyclic.
引用
收藏
页码:1221 / 1256
页数:36
相关论文
共 13 条
[1]   Disjoint mixing operators [J].
Bes, J. ;
Martin, O. ;
Peris, A. ;
Shkarin, S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (05) :1283-1322
[2]   Restrictions of an invertible chaotic operator to its invariant subspaces [J].
Chan, Kit C. ;
Kadel, Gokul R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) :996-1004
[3]   PRESCRIBED COMPRESSIONS OF DUAL HYPERCYCLIC OPERATORS [J].
Chan, Kit C. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (09) :3133-3143
[4]   Chaotic extensions of operators on Hilbert subspaces [J].
Chan, Kit C. ;
Turcu, G. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2011, 105 (02) :415-421
[5]   Topologically transitive extensions of bounded operators [J].
Grivaux, S .
MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (01) :85-96
[6]   LIMITS OF HYPERCYCLIC AND SUPERCYCLIC OPERATORS [J].
HERRERO, DA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (01) :179-190
[7]  
KITAI C., 1982, Invariant closed sets for linear operators
[8]   Spaces that admit hypercyclic operators with hypercyclic adjoints [J].
Petersson, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (06) :1671-1676
[9]  
SALAS H, 1991, P AM MATH SOC, V112, P765
[10]   Banach spaces with separable duals support dual hypercyclic operators [J].
Salas, Hector N. .
GLASGOW MATHEMATICAL JOURNAL, 2007, 49 :281-290