ON s-HARMONIC FUNCTIONS ON CONES FUNZIONI s-ARMONICHE SU CONI

被引:0
作者
Vita, Stefano [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat, Piazza Ateneo Nuovo 1, I-20126 Milan, Italy
关键词
FRACTIONAL LAPLACIAN; CONIC FUNCTIONS; ASYMPTOTIC BEHAVIOR; MARTIN KERNEL; UNIFORM HOLDER BOUNDS; SYSTEMS; EQUATIONS; GROWTH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with non negative functions which are s-harmonic on a given cone of the n-dimensional Euclidean space with vertex at zero, vanishing on the complementary. We consider the case when the parameter s approaches 1, wondering whether solutions of the problem do converge to harmonic functions in the same cone or not. Surprisingly, the answer will depend on the opening of the cone through an auxiliary eigenvalue problem on the upper half sphere. These conic functions are involved in the study of the nodal regions in the case of optimal partitions and other free boundary problems and play a crucial role in the extension of the Alt-Caffarelli-Friedman monotonicity formula to the case of fractional diffusions.
引用
收藏
页码:28 / 41
页数:14
相关论文
共 10 条
  • [1] ON s-HARMONIC FUNCTIONS ON CONES
    Terracini, Susanna
    Tortone, Giorgio
    Vita, Stefano
    ANALYSIS & PDE, 2018, 11 (07): : 1653 - 1691
  • [2] ENTIRE s-HARMONIC FUNCTIONS ARE AFFINE
    Fall, Mouhamed Moustapha
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) : 2587 - 2592
  • [3] On the Harnack inequality for antisymmetric s-harmonic functions
    Dipierro, Serena
    Thompson, Jack
    Valdinoci, Enrico
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (01)
  • [4] All functions are locally s-harmonic up to a small error
    Dipierro, Serena
    Savin, Ovidiu
    Valdinoci, Enrico
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (04) : 957 - 966
  • [5] On the nodal set of solutions to degenerate or singular elliptic equations with an application to s-harmonic functions
    Sire, Yannick
    Terracini, Susanna
    Tortone, Giorgio
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 143 : 376 - 441
  • [6] LARGE S-HARMONIC FUNCTIONS AND BOUNDARY BLOW-UP SOLUTIONS FOR THE FRACTIONAL LAPLACIAN
    Abatangelo, Nicola
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (12) : 5555 - 5607
  • [7] A NOTE ON SOBOLEV TYPE TRACE INEQUALITIES FOR s-HARMONIC EXTENSIONS
    Tang, Yongrui
    Zhou, Shujuan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (02) : 341 - 356
  • [8] Relative Fatou's theorem for (-Δ)α/2-harmonic functions in bounded κ-fat open sets
    Kim, PK
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 234 (01) : 70 - 105
  • [9] Harmonic averages, exact difference schemes and local Green's functions in variable coefficient PDE problems
    Axelsson, Owe
    Karatson, Janos
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (08): : 1441 - 1457
  • [10] RETRACTED: Levin's type boundary behaviors for functions harmonic and admitting certain lower bounds (Retracted Article)
    Li, Zhiqiang
    Vetro, Mohamed
    BOUNDARY VALUE PROBLEMS, 2015,