Dilated transformer: residual axial attention for breast ultrasound image segmentation

被引:15
|
作者
Shen, Xiaoyan [1 ]
Wang, Liangyu [1 ]
Zhao, Yu [1 ]
Liu, Ruibo [1 ]
Qian, Wei [1 ]
Ma, He [1 ,2 ,3 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang, Peoples R China
[2] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang, Peoples R China
[3] Northeastern Univ, Coll Med & Biol Informat Engn, 195 Chuangxin Rd, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast ultrasound (US); tumor segmentation; transformer; residual; axial attention; MODEL;
D O I
10.21037/qims-22-33
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: The segmentation of breast ultrasound (US) images has been a challenging task, mainly due to limited data and the inherent image characteristics involved, such as low contrast and speckle noise. Although convolutional neural network-based (CNN-based) methods have made significant progress over the past decade, they lack the ability to model long-range interactions. Recently, the transformer method has been successfully applied to the tasks of computer vision. It has a strong ability to capture distant interactions. However, most transformer-based methods with excellent performance rely on pre-training on large datasets, making it infeasible to directly apply them to medical images analysis, especially that of breast US images with limited high-quality labels. Therefore, it is of great significance to find a robust and efficient transformer-based method for use on small breast US image datasets.Methods: We developed a dilated transformer (DT) method which mainly uses the proposed residual axial attention layers to build encoder blocks and the introduced dilation module (DM) to further increase the receptive field. We evaluated the proposed method on 2 breast US image datasets using the 5-fold cross-validation method. Dataset A was a public dataset with 562 images, while dataset B was a private dataset with 878 images. Ground truth (GT) was delineated by 2 radiologists with more than 5 years of experience. The evaluation was followed by related ablation experiments.Results: The DT was found to be comparable with the state-of-the-art (SOTA) CNN-based method and outperformed the related transformer-based method, medical transformer (MT), on both datasets. Especially on dataset B, the DT outperformed the MT on metrics of Jaccard index (JI) and Dice similarity coefficient (DSC) by 2.67% and 4.68%, respectively. Meanwhile, when compared with Unet, the DT improved JI and DSC by 4.89% and 4.66%, respectively. Moreover, the results of the ablation experiments showed that each add-on part of the DT is important and contributes to the segmentation accuracy.Conclusions: The proposed transformer-based method could achieve advanced segmentation performance on different small breast US image datasets without pretraining.
引用
收藏
页码:4512 / 4528
页数:17
相关论文
共 50 条
  • [1] Slimmable transformer with hybrid axial-attention for medical image segmentation
    Hu Y.
    Mu N.
    Liu L.
    Zhang L.
    Jiang J.
    Li X.
    Computers in Biology and Medicine, 2024, 173
  • [2] A dual-stage transformer and MLP-based network for breast ultrasound image segmentation
    Lin, Guidi
    Chen, Mingzhi
    Tan, Minsheng
    Chen, Lingna
    Chen, Junxi
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2023, 43 (04) : 656 - 671
  • [3] A hybrid enhanced attention transformer network for medical ultrasound image segmentation
    Jiang, Tao
    Xing, Wenyu
    Yu, Ming
    Ta, Dean
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [4] Residual Feedback Network for Breast Lesion Segmentation in Ultrasound Image
    Wang, Ke
    Liang, Shujun
    Zhang, Yu
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT I, 2021, 12901 : 471 - 481
  • [5] HAU-Net: Hybrid CNN-transformer for breast ultrasound image segmentation
    Zhang, Huaikun
    Lian, Jing
    Yi, Zetong
    Wu, Ruichao
    Lu, Xiangyu
    Ma, Pei
    Ma, Yide
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
  • [6] HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation
    He, Qiqi
    Yang, Qiuju
    Xie, Minghao
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 155
  • [7] RESIDUAL SWIN TRANSFORMER UNET WITH CONSISTENCY REGULARIZATION FOR AUTOMATIC BREAST ULTRASOUND TUMOR SEGMENTATION
    Zhuang, Xianwei
    Zhu, Xiner
    Hu, Haoji
    Yao, Jincao
    Li, Wei
    Yang, Chen
    Wang, Liping
    Feng, Na
    Xu, Dong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3071 - 3075
  • [8] A dual-branch and dual attention transformer and CNN hybrid network for ultrasound image segmentation
    Zhang, Chong
    Wang, Lingtong
    Wei, Guohui
    Kong, Zhiyong
    Qiu, Min
    FRONTIERS IN PHYSIOLOGY, 2024, 15
  • [9] Breast ultrasound image segmentation: a survey
    Huang, Qinghua
    Luo, Yaozhong
    Zhang, Qiangzhi
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (03) : 493 - 507
  • [10] Ultrasound Image Segmentation using a Model of Transformer and DFT
    Al-Qurri, Ahmed
    Almekkawy, Mohamed
    2024 IEEE UFFC LATIN AMERICA ULTRASONICS SYMPOSIUM, LAUS, 2024,