The adjacent vertex distinguishing total chromatic numbers of planar graphs with Δ=10

被引:0
作者
Cheng, Xiaohan [1 ]
Wang, Guanghui [1 ]
Wu, Jianliang [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Adjacent vertex distinguishing total coloring; Planar graph; Maximum degree; DISTINGUISHING TOTAL COLORINGS; MAP;
D O I
10.1007/s10878-016-9995-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A (proper) total-k-coloring of a graph G is a mapping phi : V(G) boolean OR E(G) bar right arrow. {1, 2,..., k} such that any two adjacent elements in V(G) boolean OR E(G) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. A total-k-adjacent vertex distinguishing-coloring of G is a total-k-coloring of G such that for each edge uv is an element of E(G), C(u) not equal C(v). We denote the smallest value k in such a coloring of G by chi ''(a)(G). It is known that chi ''(a)(G) <= Delta (G) + 3 for any planar graph with Delta (G) >= 11. In this paper, we show that if G is a planar graph with Delta (G) >= 10, then chi ''(a)(G) <= Delta (G) + 3. Our approach is based on Combinatorial Nullstellensatz and the discharging method.
引用
收藏
页码:383 / 397
页数:15
相关论文
共 21 条
[1]   Combinatorial Nullstellensatz [J].
Alon, N .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :7-29
[2]   EVERY PLANAR MAP IS 4 COLORABLE .1. DISCHARGING [J].
APPEL, K ;
HAKEN, W .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :429-490
[3]   EVERY PLANAR MAP IS 4 COLORABLE .2. REDUCIBILITY [J].
APPEL, K ;
HAKEN, W ;
KOCH, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :491-567
[4]  
Bondy J., 2008, GRADUATE TEXTS MATH
[6]   Neighbor sum distinguishing total colorings of planar graphs with maximum degree Δ [J].
Cheng, Xiaohan ;
Huang, Danjun ;
Wang, Guanghui ;
Wu, Jianliang .
DISCRETE APPLIED MATHEMATICS, 2015, 190 :34-41
[7]   The adjacent vertex distinguishing total chromatic number [J].
Coker, Tom ;
Johannson, Karen .
DISCRETE MATHEMATICS, 2012, 312 (17) :2741-2750
[8]   Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz [J].
Ding LaiHao ;
Wang GuangHui ;
Yan GuiYing .
SCIENCE CHINA-MATHEMATICS, 2014, 57 (09) :1875-1882
[9]   Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree [J].
Dong, Ai Jun ;
Wang, Guang Hui .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) :703-709
[10]   A note on the adjacent vertex distinguishing total chromatic number of graphs [J].
Huang, Danjun ;
Wang, Weifan ;
Yan, Chengchao .
DISCRETE MATHEMATICS, 2012, 312 (24) :3544-3546