Locally Robust Semiparametric Estimation

被引:50
作者
Chernozhukov, Victor [1 ]
Carlos Escanciano, Juan [2 ]
Ichimura, Hidehiko [3 ,4 ]
Newey, Whitney K. [1 ,5 ]
Robins, James M. [6 ]
机构
[1] MIT, Dept Econ, Cambridge, MA 02139 USA
[2] Univ Carlos III Madrid, Dept Econ, Madrid, Spain
[3] Univ Arizona, Dept Econ, Tucson, AZ 85721 USA
[4] Univ Tokyo, Dept Econ, Tokyo, Japan
[5] NBER, Cambridge, MA 02138 USA
[6] Harvard Univ, Sch Publ Hlth, Epidemiol, Cambridge, MA 02138 USA
关键词
Local robustness; orthogonal moments; double robustness; semiparametric estimation; bias; GMM; EFFICIENT ESTIMATION; ASYMPTOTIC VARIANCE; CAUSAL INFERENCE; MODELS; REGRESSION; VARIABLES; SELECTION; CONVERGENCE; BOUNDS;
D O I
10.3982/ECTA16294
中图分类号
F [经济];
学科分类号
02 ;
摘要
Many economic and causal parameters depend on nonparametric or high dimensional first steps. We give a general construction of locally robust/orthogonal moment functions for GMM, where first steps have no effect, locally, on average moment functions. Using these orthogonal moments reduces model selection and regularization bias, as is important in many applications, especially for machine learning first steps. Also, associated standard errors are robust to misspecification when there is the same number of moment functions as parameters of interest. We use these orthogonal moments and cross-fitting to construct debiased machine learning estimators of functions of high dimensional conditional quantiles and of dynamic discrete choice parameters with high dimensional state variables. We show that additional first steps needed for the orthogonal moment functions have no effect, globally, on average orthogonal moment functions. We give a general approach to estimating those additional first steps. We characterize double robustness and give a variety of new doubly robust moment functions. We give general and simple regularity conditions for asymptotic theory.
引用
收藏
页码:1501 / 1535
页数:35
相关论文
共 82 条
[1]   Asymptotic Efficiency of Semiparametric Two-step GMM [J].
Ackerberg, Daniel ;
Chen, Xiaohong ;
Hahn, Jinyong ;
Liao, Zhipeng .
REVIEW OF ECONOMIC STUDIES, 2014, 81 (03) :919-943
[2]   A PRACTICAL ASYMPTOTIC VARIANCE ESTIMATOR FOR TWO-STEP SEMIPARAMETRIC ESTIMATORS [J].
Ackerberg, Daniel ;
Chen, Xiaohong ;
Hahn, Jinyong .
REVIEW OF ECONOMICS AND STATISTICS, 2012, 94 (02) :481-498
[3]   Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables [J].
Ai, Chunrong ;
Chen, Xiaohong .
JOURNAL OF ECONOMETRICS, 2007, 141 (01) :5-43
[4]   Efficient estimation of models with conditional moment restrictions containing unknown functions [J].
Ai, CR ;
Chen, XH .
ECONOMETRICA, 2003, 71 (06) :1795-1843
[5]   ASYMPTOTICS FOR SEMIPARAMETRIC ECONOMETRIC-MODELS VIA STOCHASTIC EQUICONTINUITY [J].
ANDREWS, DWK .
ECONOMETRICA, 1994, 62 (01) :43-72
[6]   SPLIT-SAMPLE INSTRUMENTAL VARIABLES ESTIMATES OF THE RETURN TO SCHOOLING [J].
ANGRIST, JD ;
KRUEGER, AB .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1995, 13 (02) :225-235
[7]   Approximate residual balancing: debiased inference of average treatment effects in high dimensions [J].
Athey, Susan ;
Imbens, Guido W. ;
Wager, Stefan .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (04) :597-623
[8]  
Avagyan V., 2021, Biostatistics & Epidemiology, P1, DOI [10.1080/24709360.2021.1898730., DOI 10.1080/24709360.2021.1898730, 10.1080/24709360.2021.1898730]
[9]   Estimating Static Models of Strategic Interactions [J].
Bajari, Patrick ;
Hong, Han ;
Krainer, John ;
Nekipelov, Denis .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2010, 28 (04) :469-482
[10]   PROGRAM EVALUATION AND CAUSAL INFERENCE WITH HIGH-DIMENSIONAL DATA [J].
Belloni, A. ;
Chernozhukov, V. ;
Fernandez-Val, I. ;
Hansen, C. .
ECONOMETRICA, 2017, 85 (01) :233-298