Nonvolatile Electric Field Control of Thermal Magnons in the Absence of an Applied Magnetic Field

被引:37
作者
Parsonnet, Eric [1 ]
Caretta, Lucas [2 ]
Nagarajan, Vikram [1 ]
Zhang, Hongrui [2 ]
Taghinejad, Hossein [1 ]
Behera, Piush [2 ,4 ]
Huang, Xiaoxi [2 ]
Kavle, Pravin [2 ]
Fernandez, Abel [2 ]
Nikonov, Dmitri [3 ]
Li, Hai [3 ]
Young, Ian [3 ]
Analytis, James [1 ]
Ramesh, Ramamoorthy [1 ,2 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Intel Corp, Components Res, Hillsboro, OR 97124 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
关键词
ROOM-TEMPERATURE; SPIN-WAVES; FILMS;
D O I
10.1103/PhysRevLett.129.087601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spin transport through magnetic insulators has been demonstrated in a variety of materials and is an emerging pathway for next-generation spin-based computing. To modulate spin transport in these systems, one typically applies a sufficiently strong magnetic field to allow for deterministic control of magnetic order. Here, we make use of the well-known multiferroic magnetoelectric, BiFeO3, to demonstrate nonvolatile, hysteretic, electric-field control of thermally excited magnon current in the absence of an applied magnetic field. These findings are an important step toward magnon-based devices, where electricfield-only control is highly desirable.
引用
收藏
页数:7
相关论文
共 57 条
[1]   Theory of far infrared properties of magnetic surfaces, films and superlattices [J].
Abraha, K ;
Tilley, DR .
SURFACE SCIENCE REPORTS, 1996, 24 (5-6) :129-222
[2]  
[Anonymous], PHYS REV LETT, DOI [10.1103/PhysRevLett.129.087601, DOI 10.1103/PHYSREVLETT.129.087601]
[3]   Nonlocal Detection of Out-of-Plane Magnetization in a Magnetic Insulator by Thermal Spin Drag [J].
Avci, Can Onur ;
Rosenberg, Ethan ;
Huang, Mantao ;
Bauer, Jackson ;
Ross, Caroline A. ;
Beach, Geoffrey S. D. .
PHYSICAL REVIEW LETTERS, 2020, 124 (02)
[4]   Mechanism of Neel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging [J].
Baldrati, L. ;
Gomonay, O. ;
Ross, A. ;
Filianina, M. ;
Lebrun, R. ;
Ramos, R. ;
Leveille, C. ;
Fuhrmann, F. ;
Forrest, T. R. ;
Maccherozzi, F. ;
Valencia, S. ;
Kronast, F. ;
Saitoh, E. ;
Sinova, J. ;
Klaeui, M. .
PHYSICAL REVIEW LETTERS, 2019, 123 (17)
[5]   The 2021 Magnonics Roadmap [J].
Barman, Anjan ;
Gubbiotti, Gianluca ;
Ladak, S. ;
Adeyeye, A. O. ;
Krawczyk, M. ;
Grafe, J. ;
Adelmann, C. ;
Cotofana, S. ;
Naeemi, A. ;
Vasyuchka, V., I ;
Hillebrands, B. ;
Nikitov, S. A. ;
Yu, H. ;
Grundler, D. ;
Sadovnikov, A., V ;
Grachev, A. A. ;
Sheshukova, S. E. ;
Duquesne, J-Y ;
Marangolo, M. ;
Csaba, G. ;
Porod, W. ;
Demidov, V. E. ;
Urazhdin, S. ;
Demokritov, S. O. ;
Albisetti, E. ;
Petti, D. ;
Bertacco, R. ;
Schultheiss, H. ;
Kruglyak, V. V. ;
Poimanov, V. D. ;
Sahoo, S. ;
Sinha, J. ;
Yang, H. ;
Munzenburg, M. ;
Moriyama, T. ;
Mizukami, S. ;
Landeros, P. ;
Gallardo, R. A. ;
Carlotti, G. ;
Kim, J-, V ;
Stamps, R. L. ;
Camley, R. E. ;
Rana, B. ;
Otani, Y. ;
Yu, W. ;
Yu, T. ;
Bauer, G. E. W. ;
Back, C. ;
Uhrig, G. S. ;
Dobrovolskiy, O., V .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (41)
[6]   Antiferromagnetic Spin Wave Field-Effect Transistor [J].
Cheng, Ran ;
Daniels, Matthew W. ;
Zhu, Jian-Gang ;
Xiao, Di .
SCIENTIFIC REPORTS, 2016, 6
[7]  
Chumak AV, 2015, NAT PHYS, V11, P453, DOI [10.1038/NPHYS3347, 10.1038/nphys3347]
[8]   Direct detection of magnon spin transport by the inverse spin Hall effect [J].
Chumak, A. V. ;
Serga, A. A. ;
Jungfleisch, M. B. ;
Neb, R. ;
Bozhko, D. A. ;
Tiberkevich, V. S. ;
Hillebrands, B. .
APPLIED PHYSICS LETTERS, 2012, 100 (08)
[9]   Magnon transistor for all-magnon data processing [J].
Chumak, Andrii V. ;
Serga, Alexander A. ;
Hillebrands, Burkard .
NATURE COMMUNICATIONS, 2014, 5
[10]   Temperature dependence of the magnon spin diffusion length and magnon spin conductivity in the magnetic insulator yttrium iron garnet [J].
Cornelissen, L. J. ;
Shan, J. ;
van Wees, B. J. .
PHYSICAL REVIEW B, 2016, 94 (18)