ELLIPTIC PROBLEMS WITH UNKNOWNS ON THE BOUNDARY AND IRREGULAR BOUNDARY DATA

被引:1
作者
Chepurukhina, Iryna [1 ]
Murach, Aleksandr [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, Tereshchenkivska 3, UA-01024 Kiev, Ukraine
来源
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY | 2020年 / 26卷 / 02期
关键词
Elliptic problem; refined Sobolev scale; Fredholm operator; boundary data; generalized solution; a priori estimate; regularity of solution; SCALE; SOBOLEV; LAWRUK; SENSE;
D O I
10.31392/MFAT-npu26_2.2020.01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an elliptic problem with unknowns on the boundary of the domain of the elliptic equation and suppose that the right-hand side of this equation is square integrable and that the boundary data are arbitrary (specifically, irregular) distributions. We investigate local (up to the boundary) properties of generalized solutions to the problem in Hilbert distribution spaces that belong to the refined Sobolev scale. These spaces are parametrized with a real number and a function that varies slowly at infinity. The function parameter refines the number order of the space. We prove theorems on local regularity and a local a priori estimate of generalized solutions to the problem under investigation. These theorems are new for Sobolev spaces as well.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 37 条
  • [1] [Anonymous], 1930, Mathematica
  • [2] [Anonymous], 1997, Elliptic Boundary Value Problems in Domains with Point Singularities
  • [3] [Anonymous], 1965, Successes of Mathematical Sciences
  • [4] Anop A., ARXIV200305360
  • [5] Irregular Elliptic Boundary-Value Problems and Hormander Spaces
    Anop, A. V.
    Kasirenko, T. M.
    Murach, O. O.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (03) : 341 - 361
  • [6] ASLANYAN AG, 1981, FUNCT ANAL APPL+, V15, P157
  • [7] Behrndt J., 2020, BOUND VALUE PROBL, V108
  • [8] Berezansky Yu.M., 1968, AM MATH SOC
  • [9] Bingham NH., 1989, REGULAR VARIATION
  • [10] BOUTETDE.L, 1971, ACTA MATH-UPPSALA, V126, P11