Non-Gaussian morphology on large scales:: Minkowski functionals of the REFLEX cluster catalogue

被引:44
|
作者
Kerscher, M
Mecke, K
Schuecker, P
Böhringer, H
Guzzo, L
Collins, CA
Schindler, S
De Grandi, S
Cruddace, R
机构
[1] Univ Munich, Sekt Phys, D-80333 Munich, Germany
[2] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[3] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[4] Univ Stuttgart, Fak Phys, Inst Theoret & Angew Phys, D-70569 Stuttgart, Germany
[5] Max Planck Inst Extraterr Phys, D-85740 Garching, Germany
[6] Osserv Astron Brera, Merate, Italy
[7] Liverpool John Moores Univ, Liverpool L3 5UX, Merseyside, England
[8] USN, Res Lab, Washington, DC 20375 USA
关键词
large-scale structure of Universe; galaxies : clusters : general; cosmology : observation; cosmology : theory;
D O I
10.1051/0004-6361:20011063
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In order to quantify higher-order correlations of the galaxy cluster distribution we use a complete family of additive measures which give scale-dependent morphological information. Minkowski functionals can be expressed analytically in terms of integrals of n-point correlation functions. They can be compared with measured Minkowski functionals of volume limited samples extracted from the Reflex survey. We find significant non-Gaussian features in the large-scale spatial distribution of galaxy clusters. A Gauss-Poisson process can be excluded as a viable model for the distribution of galaxy clusters at the significance level of 95%.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Non-gaussian morphology on large scales:: Minkowski functionals of the REFLEX clusters of galaxies
    Kerscher, M
    Mecke, K
    Schuecker, P
    Böhringer, H
    Guzzo, L
    De Grandi, S
    Collins, CA
    Schindler, S
    Cruddace, R
    TRACING COSMIC EVOLUTION WITH GALAXY CLUSTERS, PROCEEDINGS, 2002, 268 : 393 - 394
  • [2] Non-Gaussian Minkowski functionals and extrema counts in redshift space
    Codis, S.
    Pichon, C.
    Pogosyan, D.
    Bernardeau, F.
    Matsubara, T.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 435 (01) : 531 - 564
  • [3] Weakly non-Gaussian formula for the Minkowski functionals in general dimensions
    Matsubara, Takahiko
    Kuriki, Satoshi
    PHYSICAL REVIEW D, 2021, 104 (10)
  • [4] Cluster non-Gaussian functional data
    Zhong, Qingzhi
    Lin, Huazhen
    Li, Yi
    BIOMETRICS, 2021, 77 (03) : 852 - 865
  • [5] Non Gaussian Minkowski functionals and extrema counts for CMB maps
    Pogosyan, Dmitri
    Codis, Sandrine
    Pichon, Christophe
    ZELDOVICH UNIVERSE: GENESIS AND GROWTH OF THE COSMIC WEB, 2016, 11 (S308): : 61 - 66
  • [6] Characterizing cluster morphology using vector-valued minkowski functionals
    Beisbart, C
    Buchert, T
    LARGE SCALE STRUCTURE: TRACKS AND TRACES, 1998, : 197 - 200
  • [7] Dynamics of a rod in a random static environment: non-Gaussian behaviour on large length scales
    Moreno, AJ
    Kob, W
    PHILOSOPHICAL MAGAZINE, 2004, 84 (13-16) : 1383 - 1388
  • [8] Evolution of the cluster abundance in non-Gaussian models
    Robinson, J
    Baker, JE
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 311 (04) : 781 - 792
  • [9] NON-GAUSSIAN SCATTER IN CLUSTER SCALING RELATIONS
    Shaw, Laurie D.
    Holder, Gilbert P.
    Dudley, Jonathan
    ASTROPHYSICAL JOURNAL, 2010, 716 (01): : 281 - 285
  • [10] Length Scales in Brownian yet Non-Gaussian Dynamics
    Miotto, Jose M.
    Pigolotti, Simone
    Chechkin, Aleksei, V
    Roldan-Vargas, Sandalo
    PHYSICAL REVIEW X, 2021, 11 (03)