Manipulation of electronic structure in WSe2 monolayer by strain

被引:27
作者
Yang, Cong-xia [1 ]
Zhao, Xu [1 ]
Wei, Shu-yi [1 ]
机构
[1] Henan Normal Univ, Coll Phys & Mat Sci, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
Transition-metal dichalcogenides; Electronic band structure; First-principles; MAGNETIC-PROPERTIES; MOS2; WS2; PRISTINE; SE;
D O I
10.1016/j.ssc.2016.07.003
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, we study the electronic properties of WSe2 monolayer with biaxial tensile strain and compressive strain by using first principles based on the density function theory. Under the biaxial tensile strain, WSe2 monolayer retains direct band gap with increasing strain and the band gap of WSe2 continuously decreases with increasing strain, eventually turn to metal when strain is equal to or more than 13%. Under the biaxial compressive strain, WSe2 monolayer turns to indirect gap and the band gap continuously decreases with increasing strain, finally turn to metal when strain is up to -7%. The strain can reduce the band gap of the WSe2 monolayer regardless of the strain direction. By comparison, we can see that the tensile strain appears to be more effective in reducing the band gap of pristine WSe2 monolayer than the compressive strain from -5% to 5%. But the band gap turns to zero quickly from -6% to -7% under compressive strain, however for tensile strain from 5% to 13%, the band gap decreases slowly. Based on the further analysis of the projected charge density for WSe2 monolayer, the fundamental reason of the change of band structure under biaxial tensile strain is revealed. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:70 / 74
页数:5
相关论文
共 32 条
[1]   Strain engineering of WS2, WSe2, and WTe2 [J].
Amin, B. ;
Kaloni, T. P. ;
Schwingenschloegl, U. .
RSC ADVANCES, 2014, 4 (65) :34561-34565
[2]  
Blonchl P.E., 1994, PHYS REV B, V50, P17953
[3]   In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang .
CHEMICAL COMMUNICATIONS, 2011, 47 (14) :4252-4254
[4]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[5]   ELECTROCHEMICAL SOLAR-CELL BASED ON THE D-BAND SEMICONDUCTOR TUNGSTEN-DISELENIDE [J].
GOBRECHT, J ;
GERISCHER, H ;
TRIBUTSCH, H .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1978, 82 (12) :1331-1335
[6]  
Johnson D., 2014, IEEE SPECTR
[7]   Tunable Magnetism in Strained Graphene with Topological Line Defect [J].
Kou, Liangzhi ;
Tang, Chun ;
Guo, Wanlin ;
Chen, Changfeng .
ACS NANO, 2011, 5 (02) :1012-1017
[8]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[9]   Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X=S, Se, Te) [J].
Kumar, Ashok ;
Ahluwalia, P. K. .
PHYSICA B-CONDENSED MATTER, 2013, 419 :66-75
[10]   Electronic structure of two-dimensional crystals from ab initio theory [J].
Lebegue, S. ;
Eriksson, O. .
PHYSICAL REVIEW B, 2009, 79 (11)