Domination by a Polish space of the complement of the diagonal of X implies that X is cosmic

被引:6
作者
Guerrero Sanchez, David [1 ]
Tkachuk, Vladimir V. [1 ]
机构
[1] Univ Autonoma Metropolitana, Dept Matemat, Ave San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
关键词
Domination; Compact space; Second countable space; Metrizability; The space P of irrationals; M-diagonal; Cosmic space; Tychonoff cube; COMPACT SPACES;
D O I
10.1016/j.topol.2016.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We will prove that a Tychonoff space X is analytic if and only if (X x X)\Delta is dominated by a Polish space; here Delta = {(x, x) : x is an element of X} is the diagonal of X. This solves two published open questions. We will also establish under CH, that a Tychonoff space X has a countable network whenever (X x X)\Delta is dominated by a second countable space. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 11 条
[1]  
Arhangelskii A.V., 1984, Fundamentals of General Topology: Problems and Exercises
[2]  
ARHANGELSKII AV, 1978, RUSS MATH SURV, V33, P33
[3]   Domination by second countable spaces and Lindelof Σ-property [J].
Cascales, B. ;
Orihuela, J. ;
Tkachuk, V. V. .
TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (02) :204-214
[4]   A SEQUENTIAL PROPERTY OF SET-VALUED MAPS [J].
CASCALES, B ;
ORIHUELA, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) :86-100
[5]   Compact spaces with a P-diagonal [J].
Dow, Alan ;
Hart, Klaas Pieter .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (03) :721-726
[6]   DOMINATION CONDITIONS UNDER WHICH A COMPACT SPACE IS METRISABLE [J].
Dowand, Alan ;
Sanchez, David Guerrero .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (03) :502-507
[7]  
Engelking R., 1977, GEN TOPOLOGY
[8]  
Hodel R., 1984, Handbook of Set-Theoretic Topology, P1, DOI DOI 10.1016/B978-0-444-86580-9.50004-5
[9]   CONVERGENT FREE SEQUENCES IN COMPACT SPACES [J].
JUHASZ, I ;
SZENTMIKLOSSY, Z .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (04) :1153-1160
[10]  
Juhasz I., 1980, Mathematical Centre Tracts, V123