Machine learning for food security: Principles for transparency and usability

被引:22
作者
Zhou, Yujun [1 ]
Lentz, Erin [2 ]
Michelson, Hope [1 ]
Kim, Chungmann [1 ]
Baylis, Kathy [3 ]
机构
[1] Univ Illinois, Dept Agr & Consumer Econ, Champaign, IL USA
[2] Univ Texas Austin, Lyndon B Johnson Sch Publ Affairs, Austin, TX 78712 USA
[3] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA
关键词
food policy; food security; machine learning; remote-sensing; sub-Saharan Africa; NETWORK; WEALTH;
D O I
10.1002/aepp.13214
中图分类号
F3 [农业经济];
学科分类号
0202 ; 020205 ; 1203 ;
摘要
Machine learning (ML) holds potential to predict hunger crises before they occur. Yet, ML models embed crucial choices that affect their utility. We develop a prototype model to predict food insecurity across three countries in sub-Saharan Africa. Readily available data on prices, assets, and weather all influence our model predictions. Our model obtains 55%-84% accuracy, substantially outperforming both a logit and ML models using only time and location. We highlight key principles for transparency and demonstrate how modeling choices between recall and accuracy can be tailored to policy-maker needs. Our work provides a path for future modeling efforts in this area.
引用
收藏
页码:893 / 910
页数:18
相关论文
共 36 条
[1]  
Andree B.P.J., 2020, Policy Research Working Paper No. 9412., DOI [10.1101/2020.04.27.20081562, DOI 10.1101/2020.04.27.20081562]
[2]  
[Anonymous], 2018, Yemen plan of action
[3]   The NASA Hydrological Forecast System for Food and Water Security Applications [J].
Arsenault, Kristi R. ;
Shukla, Shraddhanand ;
Hazra, Abheera ;
Getirana, Augusto ;
McNally, Amy ;
Kumar, Sujay, V ;
Koster, Randal D. ;
Peters-Lidard, Christa D. ;
Zaitchik, Benjamin F. ;
Badr, Hamada ;
Jung, Hahn Chul ;
Narapusetty, Bala ;
Navari, Mahdi ;
Wang, Shugong ;
Mocko, David M. ;
Funk, Chris ;
Harrison, Laura ;
Husak, Gregory J. ;
Adoum, Alkhalil ;
Galu, Gideon ;
Magadzire, Tamuka ;
Roningen, Jeanne ;
Shaw, Michael ;
Eylander, John ;
Bergaoui, Karim ;
McDonnell, Rachael A. ;
Verdin, James P. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2020, 101 (07) :E1007-E1025
[4]  
Baez Javier E., 2019, Adaptive Safety Nets for Rural Africa: Drought-Sensitive Targeting with Sparse Data 9071
[5]   Measuring Food Insecurity [J].
Barrett, Christopher B. .
SCIENCE, 2010, 327 (5967) :825-828
[6]  
Bazzi Samuel., 2019, REV ECON STAT, P1
[7]   Predicting poverty and wealth from mobile phone metadata [J].
Blumenstock, Joshua ;
Cadamuro, Gabriel ;
On, Robert .
SCIENCE, 2015, 350 (6264) :1073-1076
[8]  
Centre for Humanitarian Data, 2019, PEER REV FRAM PRED A
[9]   How accurate is food security early warning? Evaluation of FEWS NET accuracy in Ethiopia [J].
Choularton, Richard J. ;
Krishnamurthy, P. Krishna .
FOOD SECURITY, 2019, 11 (02) :333-344
[10]   "Explaining" machine learning reveals policy challenges [J].
Coyle, Diane ;
Weller, Adrian .
SCIENCE, 2020, 368 (6498) :1433-1434