Atom-atom interactions around the band edge of a photonic crystal waveguide

被引:186
作者
Hood, Jonathan D. [1 ,2 ]
Goban, Akihisa [1 ,2 ,4 ]
Asenjo-Garcia, Ana [1 ,2 ]
Lu, Mingwu [1 ,2 ]
Yu, Su-Peng [1 ,2 ]
Chang, Darrick E. [3 ]
Kimble, H. J. [1 ,2 ]
机构
[1] CALTECH, Norman Bridge Lab Phys MC12 33, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Barcelona Inst Sci & Technol, Inst Ciencies Foton, Barcelona 08860, Spain
[4] Univ Colorado, JILA, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
quantum optics; nanophotonics; atomic physics; SINGLE QUANTUM-DOT; SPONTANEOUS EMISSION; ELECTRODYNAMICS; CAVITY; PLASMONS; LIGHT;
D O I
10.1073/pnas.1603788113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields E(x) proportional to e(+/- ikxx) outside the bandgap to localized fields E(x) proportional to e(-kx vertical bar x vertical bar) within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the D-1 line of atomic cesium for (N) over bar = 3.0 +/- 0.5 atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.
引用
收藏
页码:10507 / 10512
页数:6
相关论文
共 48 条
[1]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[2]   Observation of strong coupling between one atom and a monolithic microresonator [J].
Aoki, Takao ;
Dayan, Barak ;
Wilcut, E. ;
Bowen, W. P. ;
Parkins, A. S. ;
Kippenberg, T. J. ;
Vahala, K. J. ;
Kimble, H. J. .
NATURE, 2006, 443 (7112) :671-674
[3]  
Asenjo-Garcia A, 2016, ARXIV160604977
[4]   Efficient All-Optical Switching Using Slow Light within a Hollow Fiber [J].
Bajcsy, M. ;
Hofferberth, S. ;
Balic, V. ;
Peyronel, T. ;
Hafezi, M. ;
Zibrov, A. S. ;
Vuletic, V. ;
Lukin, M. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[5]   Atom trapping and guiding with a subwavelength-diameter optical fiber [J].
Balykin, VI ;
Hakuta, K ;
Le Kien, F ;
Liang, JQ ;
Morinaga, M .
PHYSICAL REVIEW A, 2004, 70 (01) :011401-1
[6]   Dispersion forces in macroscopic quantum electrodynamics [J].
Buhmann, Stefan Yoshi ;
Welsch, Dirk-Gunnar .
PROGRESS IN QUANTUM ELECTRONICS, 2007, 31 (02) :51-130
[7]   Atom-field dressed states in slow-light waveguide QED [J].
Calajo, Giuseppe ;
Ciccarello, Francesco ;
Chang, Darrick ;
Rabl, Peter .
PHYSICAL REVIEW A, 2016, 93 (03)
[8]   A single-photon transistor using nanoscale surface plasmons [J].
Chang, Darrick E. ;
Sorensen, Anders S. ;
Demler, Eugene A. ;
Lukin, Mikhail D. .
NATURE PHYSICS, 2007, 3 (11) :807-812
[9]  
COMSOL Inc, 2009, COMS MULT
[10]   Superconducting Circuits for Quantum Information: An Outlook [J].
Devoret, M. H. ;
Schoelkopf, R. J. .
SCIENCE, 2013, 339 (6124) :1169-1174