Tuning the Immunostimulation Properties of Cationic Lipid Nanocarriers for Nucleic Acid Delivery

被引:14
作者
Dey, Arindam K. [1 ,2 ]
Nougarede, Adrien [1 ,3 ]
Clement, Flora [1 ,2 ,4 ]
Fournier, Carole [1 ,2 ]
Jouvin-Marche, Evelyne [1 ,2 ]
Escude, Marie [1 ,3 ]
Jary, Dorothee [1 ,3 ]
Navarro, Fabrice P. [1 ,3 ]
Marche, Patrice N. [1 ,2 ]
机构
[1] Univ Grenoble Alpes, St Martin Dheres, France
[2] CNRS, Inst Adv Biosci, INSERM, UMR5309,U1209,Res Ctr, La Tronche, France
[3] CEA, Microfluid Syst & Bioengn Lab, LETI, Div Biol & Healthcare Technol, Grenoble, France
[4] Univ Grenoble Alpes, Biom, IRIG, INSERM,CEA, Grenoble, France
基金
欧盟地平线“2020”;
关键词
nanostructured lipid carrier; antigen presenting cells; nucleic acid delivery; immunotoxicity assessment; surface charge (zeta potential); CHEMOATTRACTANT PROTEIN-1 EXPRESSION; DENDRITIC CELLS; DRUG-DELIVERY; NANOPARTICLES SLN; SURFACE-CHARGE; GENE-THERAPY; IN-VITRO; CARRIERS; ANTIBODY; KINASE;
D O I
10.3389/fimmu.2021.722411
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Nonviral systems, such as lipid nanoparticles, have emerged as reliable methods to enable nucleic acid intracellular delivery. The use of cationic lipids in various formulations of lipid nanoparticles enables the formation of complexes with nucleic acid cargo and facilitates their uptake by target cells. However, due to their small size and highly charged nature, these nanocarrier systems can interact in vivo with antigen-presenting cells (APCs), such as dendritic cells (DCs) and macrophages. As this might prove to be a safety concern for developing therapies based on lipid nanocarriers, we sought to understand how they could affect the physiology of APCs. In the present study, we investigate the cellular and metabolic response of primary macrophages or DCs exposed to the neutral or cationic variant of the same lipid nanoparticle formulation. We demonstrate that macrophages are the cells affected most significantly and that the cationic nanocarrier has a substantial impact on their physiology, depending on the positive surface charge. Our study provides a first model explaining the impact of charged lipid materials on immune cells and demonstrates that the primary adverse effects observed can be prevented by fine-tuning the load of nucleic acid cargo. Finally, we bring rationale to calibrate the nucleic acid load of cationic lipid nanocarriers depending on whether immunostimulation is desirable with the intended therapeutic application, for instance, gene delivery or messenger RNA vaccines.
引用
收藏
页数:15
相关论文
共 60 条
[11]   Immunogenicity Testing of Lipidoids In Vitro and In Silico: Modulating Lipidoid-Mediated TLR4 Activation by Nanoparticle Design [J].
de Groot, Anne Marit ;
Thanki, Kaushik ;
Gangloff, Monique ;
Falkenberg, Emily ;
Zeng, Xianghui ;
van Bijnen, Djai C. J. ;
van Eden, Willem ;
Franzyk, Henrik ;
Nielsen, Hanne M. ;
Broere, Femke ;
Gay, Nick J. ;
Foged, Camilla ;
Sijts, Alice J. A. M. .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2018, 11 :159-169
[12]   Solid lipid nanoparticles:: Formulation factors affecting cell transfection capacity [J].
del Pozo-Rodriguez, A. ;
Delgado, D. ;
Solinis, M. A. ;
Gascon, A. R. ;
Pedraz, J. L. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2007, 339 (1-2) :261-268
[13]   Monocyte Chemoattractant Protein-1 (MCP-1): An Overview [J].
Deshmane, Satish L. ;
Kremlev, Sergey ;
Amini, Shohreh ;
Sawaya, Bassel E. .
JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, 2009, 29 (06) :313-326
[14]   Impact of Gold Nanoparticles on the Functions of Macrophages and Dendritic Cells [J].
Dey, Arindam K. ;
Gonon, Alexis ;
Pecheur, Eve-Isabelle ;
Pezet, Mylene ;
Villiers, Christian ;
Marche, Patrice N. .
CELLS, 2021, 10 (01) :1-19
[15]   Formation and intracellular trafficking of lipoplexes and polyplexes [J].
Elouahabi, A ;
Ruysschaert, JM .
MOLECULAR THERAPY, 2005, 11 (03) :336-347
[16]   A Nanostructured Lipid Carrier for Delivery of a Replicating Viral RNA Provides Single, Low-Dose Protection against Zika [J].
Erasmus, Jesse H. ;
Khandhar, Amit P. ;
Guderian, Jeff ;
Granger, Brian ;
Archer, Jacob ;
Archer, Michelle ;
Gage, Emily ;
Fuerte-Stone, Jasmine ;
Larson, Elise ;
Lin, Susan ;
Kramer, Ryan ;
Coler, Rhea N. ;
Fox, Christopher B. ;
Stinchcomb, Dan T. ;
Reed, Steven G. ;
Van Hoeven, Neal .
MOLECULAR THERAPY, 2018, 26 (10) :2507-2522
[17]   Evaluation of cationic solid lipid microparticles as synthetic carriers for the targeted delivery of macromolecules to phagocytic antigen-presenting cells [J].
Erni, C ;
Suard, C ;
Freitas, S ;
Dreher, D ;
Merkle, HP ;
Walter, E .
BIOMATERIALS, 2002, 23 (23) :4667-4676
[18]   Normal differentiation and functions of mouse dendritic cells derived from RAG-deficient bone marrow progenitors [J].
Faure, M ;
Villiers, CL ;
Marche, PN .
CELLULAR IMMUNOLOGY, 2004, 228 (01) :8-14
[19]   The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles [J].
Froehlich, Eleonore .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2012, 7 :5577-5591
[20]   Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization [J].
Fromen, Catherine A. ;
Robbins, Gregory R. ;
Shen, Tammy W. ;
Kai, Marc P. ;
Ting, Jenny P. Y. ;
DeSimone, Joseph M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (02) :488-493