Tuning the Immunostimulation Properties of Cationic Lipid Nanocarriers for Nucleic Acid Delivery

被引:14
作者
Dey, Arindam K. [1 ,2 ]
Nougarede, Adrien [1 ,3 ]
Clement, Flora [1 ,2 ,4 ]
Fournier, Carole [1 ,2 ]
Jouvin-Marche, Evelyne [1 ,2 ]
Escude, Marie [1 ,3 ]
Jary, Dorothee [1 ,3 ]
Navarro, Fabrice P. [1 ,3 ]
Marche, Patrice N. [1 ,2 ]
机构
[1] Univ Grenoble Alpes, St Martin Dheres, France
[2] CNRS, Inst Adv Biosci, INSERM, UMR5309,U1209,Res Ctr, La Tronche, France
[3] CEA, Microfluid Syst & Bioengn Lab, LETI, Div Biol & Healthcare Technol, Grenoble, France
[4] Univ Grenoble Alpes, Biom, IRIG, INSERM,CEA, Grenoble, France
基金
欧盟地平线“2020”;
关键词
nanostructured lipid carrier; antigen presenting cells; nucleic acid delivery; immunotoxicity assessment; surface charge (zeta potential); CHEMOATTRACTANT PROTEIN-1 EXPRESSION; DENDRITIC CELLS; DRUG-DELIVERY; NANOPARTICLES SLN; SURFACE-CHARGE; GENE-THERAPY; IN-VITRO; CARRIERS; ANTIBODY; KINASE;
D O I
10.3389/fimmu.2021.722411
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Nonviral systems, such as lipid nanoparticles, have emerged as reliable methods to enable nucleic acid intracellular delivery. The use of cationic lipids in various formulations of lipid nanoparticles enables the formation of complexes with nucleic acid cargo and facilitates their uptake by target cells. However, due to their small size and highly charged nature, these nanocarrier systems can interact in vivo with antigen-presenting cells (APCs), such as dendritic cells (DCs) and macrophages. As this might prove to be a safety concern for developing therapies based on lipid nanocarriers, we sought to understand how they could affect the physiology of APCs. In the present study, we investigate the cellular and metabolic response of primary macrophages or DCs exposed to the neutral or cationic variant of the same lipid nanoparticle formulation. We demonstrate that macrophages are the cells affected most significantly and that the cationic nanocarrier has a substantial impact on their physiology, depending on the positive surface charge. Our study provides a first model explaining the impact of charged lipid materials on immune cells and demonstrates that the primary adverse effects observed can be prevented by fine-tuning the load of nucleic acid cargo. Finally, we bring rationale to calibrate the nucleic acid load of cationic lipid nanocarriers depending on whether immunostimulation is desirable with the intended therapeutic application, for instance, gene delivery or messenger RNA vaccines.
引用
收藏
页数:15
相关论文
共 60 条
[1]   Immunotoxicity of poly (lactic-co-glycolic acid) nanoparticles: influence of surface properties on dendritic cell activation [J].
Barillet, S. ;
Fattal, E. ;
Mura, S. ;
Tsapis, N. ;
Pallardy, M. ;
Hillaireau, H. ;
Kerdine-Romer, S. .
NANOTOXICOLOGY, 2019, 13 (05) :606-622
[2]   Overcoming immunogenicity issues of HIV p24 antigen by the use of innovative nanostructured lipid carriers as delivery systems: evidences in mice and non-human primates [J].
Bayon, Emilie ;
Morlieras, Jessica ;
Dereuddre-Bosquet, Nathalie ;
Gonon, Alexis ;
Gosse, Leslie ;
Courant, Thomas ;
Le Grand, Roger ;
Marche, Patrice N. ;
Navarro, Fabrice P. .
NPJ VACCINES, 2018, 3
[3]   Principles of nanoparticle design for overcoming biological barriers to drug delivery [J].
Blanco, Elvin ;
Shen, Haifa ;
Ferrari, Mauro .
NATURE BIOTECHNOLOGY, 2015, 33 (09) :941-951
[4]  
Bruniaux J., 2014, FORMULATION DELIVERY, Patent No. [EP2013066821W, 2013066821]
[5]   Lipid composition: a "key factor" for the rational manipulation of the liposome-protein corona by liposome design [J].
Caracciolo, G. ;
Pozzi, D. ;
Capriotti, A. L. ;
Cavaliere, C. ;
Piovesana, S. ;
Amenitsch, H. ;
Lagana, A. .
RSC ADVANCES, 2015, 5 (08) :5967-5975
[6]   Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles [J].
Caracciolo, Giulio ;
Pozzi, Daniela ;
Capriotti, Anna Laura ;
Cavaliere, Chiara ;
Lagana, Aldo .
JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (03)
[7]   Synthesis and use of an amphiphilic dendrimer for siRNA delivery into primary immune cells [J].
Chen, Jiaxuan ;
Ellert-Miklaszewska, Aleksandra ;
Garofalo, Stefano ;
Dey, Arindam K. ;
Tang, Jingjie ;
Jiang, Yifan ;
Clement, Flora ;
Marche, Patrice N. ;
Liu, Xiaoxuan ;
Kaminska, Bozena ;
Santoni, Angela ;
Limatola, Cristina ;
Rossi, John J. ;
Zhou, Jiehua ;
Peng, Ling .
NATURE PROTOCOLS, 2021, 16 (01) :327-351
[8]   Charge-reversal nanoparticles: novel targeted drug delivery carriers [J].
Chen, Xinli ;
Liu, Lisha ;
Jiang, Chen .
ACTA PHARMACEUTICA SINICA B, 2016, 6 (04) :261-267
[9]   Progresses towards safe and efficient gene therapy vectors [J].
Chira, Sergiu ;
Jackson, Carlo S. ;
Oprea, Iulian ;
Ozturk, Ferhat ;
Pepper, Michael S. ;
Diaconu, Iulia ;
Braicu, Cornelia ;
Raduly, Lajos-Zsolt ;
Calin, George A. ;
Berindan-Neagoe, Ioana .
ONCOTARGET, 2015, 6 (31) :30675-30703
[10]   Tailoring nanostructured lipid carriers for the delivery of protein antigens: Physicochemical properties versus immunogenicity studies [J].
Courant, Thomas ;
Bayon, Emilie ;
Reynaud-Dougier, Hei Lanne ;
Villiers, Christian ;
Menneteau, Mathilde ;
Marche, Patrice N. ;
Navarro, Fabrice P. .
BIOMATERIALS, 2017, 136 :29-42