Adult Drosophila melanogaster as a model for the study of glucose homeostasis

被引:43
作者
Haselton, Aaron T. [2 ]
Fridell, Yih-Woei C. [1 ]
机构
[1] Univ Connecticut, Dept Allied Hlth Sci, Storrs, CT 06269 USA
[2] SUNY Albany, Dept Biol, New Paltz, NY 12561 USA
来源
AGING-US | 2010年 / 2卷 / 08期
关键词
Drosophila insulin-like peptides (DILPs); DILP-producing cells (IPCs); Insulin/Insulin-like growth factor signaling (IIS); hemolymph; adipokinetic hormone (AKH); INSULIN-PRODUCING NEURONS; LIFE-SPAN; CELLS; GROWTH; ABLATION; PEPTIDES;
D O I
10.18632/aging.100185
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Genetic ablation of Drosophila melanogaster insulin-like peptide (DILP) and adipokinetic hormone-producing cells accompanied by cell biological and metabolic measurements have revealed functional conservation in nutrient sensing and the underlying signaling mechanisms between mammal and fruit fly. Despite significant advances gained in understanding the neuroendocrine responses to nutrient changes during developmental larval stages, we discuss here the need for investigating glucose homeostasis in the post-mitotic adult stage as the result of ablation of DILP producing cells (IPCs). Our recent studies demonstrate that while both constitutive and adult-specific partial ablation of IPCs renders those flies hyperglycemic and glucose intolerant, flies with adult-specific IPC ablation remain insulin sensitive. Our results substantiate a role of adult IPCs in modulating aspects of glucose homeostasis and highlight the complexity in DILP action in the adult fly.
引用
收藏
页码:523 / 526
页数:4
相关论文
共 50 条
  • [21] Pumilio Regulates Sleep Homeostasis in Response to Chronic Sleep Deprivation in Drosophila melanogaster
    De Jesus-Olmo, Luis A.
    Rodriguez, Norma
    Francia, Marcelo
    Aleman-Rios, Jonathan
    Pacheco-Agosto, Carlos J.
    Ortega-Torres, Joselyn
    Nieves, Richard
    Fuenzalida-Uribe, Nicolas
    Ghezzi, Alfredo
    Agosto, Jose L.
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [22] Osmotic regulation in adult Drosophila melanogaster during dehydration and rehydration
    Albers, MA
    Bradley, TJ
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2004, 207 (13) : 2313 - 2321
  • [23] Drosophila melanogaster: A Powerful Tiny Animal Model for the Study of Metabolic Hepatic Diseases
    Moraes, Karen C. M.
    Montagne, Jacques
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [24] Exposure to Bisphenol A Affects Lipid Metabolism in Drosophila melanogaster
    Williams, Michael J.
    Wang, Yi
    Klockars, Anica
    Lind, P. Monica
    Fredriksson, Robert
    Schioth, Helgi B.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2014, 114 (05) : 414 - 420
  • [25] Iron Absorption in Drosophila melanogaster
    Mandilaras, Konstantinos
    Pathmanathan, Tharse
    Missirlis, Fanis
    NUTRIENTS, 2013, 5 (05): : 1622 - 1647
  • [26] Drosophila as a Model for Interorgan Communication: Lessons from Studies on Energy Homeostasis
    Rajan, Akhila
    Perrimon, Norbert
    DEVELOPMENTAL CELL, 2011, 21 (01) : 29 - 31
  • [27] Drosophila Cytokine Unpaired 2 Regulates Physiological Homeostasis by Remotely Controlling Insulin Secretion
    Rajan, Akhila
    Perrimon, Norbert
    CELL, 2012, 151 (01) : 123 - 137
  • [28] Larval diet affects adult reproduction, but not survival, independent of the effect of injury and infection in Drosophila melanogaster
    Savola, Eevi
    Vale, Pedro F.
    Walling, Craig A.
    JOURNAL OF INSECT PHYSIOLOGY, 2022, 142
  • [29] An overview of the insulin signaling pathway in model organisms Drosophila melanogaster and Caenorhabditis elegans
    Biglou, Sanaz G.
    Bendena, William G.
    Chin-Sang, Ian
    PEPTIDES, 2021, 145
  • [30] Drosophila melanogaster as a High-Throughput Model for Host-Microbiota Interactions
    Trinder, Mark
    Daisley, Brendan A.
    Dube, Josh S.
    Reid, Gregor
    FRONTIERS IN MICROBIOLOGY, 2017, 8